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Abstract

The authors have previously defined Quantum, a framework for managing
resources, which can be used by both providers and consumers of resources to
express and program resource-related operations. In this paper, we extend this
framework to the distributed setting by introducing distribution-specific opera-
tions, and we generalise the framework to support multiple types of resources.

1 Introduction

Dynamic code loading has popularised the idea of Internet servers able to reconfigure
themselves and to extend their capabilities by uploading code dynamically — exam-
ples of such systems can be found in the mobile agent literature. The full power of
this paradigm shift can be achieved if untrusted code can be run in a safe manner, and
in particular if malicious code can be prevented from using too many resources. This
raises the problem of resource management, both for the provider and the consumer of
resources.

Another important trend is illustrated by multi-agent systems or services-based
architecture (in particular in the Grid context), where complex applications are the
result of dynamic composition, opportunistic reuse, and on-the-fly creation of multiple
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distributed computations. Resource management is not only crucial, as illustrated by
proposals for computational economies, but has now become a distributed problem.

In previous work [9, 10], the authors introduced Quantum, a framework generalis-
ing Kornfeld and Hewitt’s group hierarchy [7] and providing a programmatic interface
for managing resources in a distributed setting. Quantum is based on the notion of en-
ergy, an abstract notion denoting a quantity of resources, and on groups acting as tanks
of energy. Groups are organised along a hierarchical structure. Groups sponsor com-
putations, which consume energy from the group they are directly sponsored by. Two
forms of notification are supported: exhaustion of the energy contained in a group and
termination of the computation sponsored by a group. Additionally, Quantum provides
a mechanism for pausing and resuming a hierarchy of computations. Notifications are
made available to the programmer and therefore can be arbitrary computations, whose
resources must also be managed: Quantum specifies how such notifications can be
integrated in a single framework. Our previous work focused on its formalisation [9]
and its implementation in a shared memory [10].

The distributed aspect of Quantum had not been investigated properly. We assumed
that the shared memory could be extended to the distributed context, but this required
complex and unpractical algorithms to maintain tank levels transparently. Since then,
advances in mobile agent systems, and “Internet Programming” languages have shown
that distribution has to be represented explicitly in the formalism.

While our model of resource management had always been intended to support
multiple resources of different types (and not just processor resources), we had never
shown how Quantum could be extended to accommaodate different types of resources.

The contribution of this paper is twofold: (i) the introduction of two different
primitives related to distribution — migration and communications — and their se-
mantics in terms of groups. (i) the support for multiple types of resources. Each of
these contributions is presented in turn, followed by a brief related work section and a
conclusion.

2 An Overview of Quantum

In this section, we overview Quantum as described in previous publications [10, 9].
The abstract syntax of Quantum primitives is displayed in Figure 1.

Quantum is independent of the primitives for parallelism or distribution. Parallel
threads of evaluation may be created using threads, or higher-level constructs such as
pcall or future. In the sequel, we shall used the term thread to denote an evaluation
thread created by the constructs for parallelism.

Our goal is to be able to allocate resources to computations, and to monitor and
to control their use as evaluations proceed. We regard two events as essential to the
lifetime of a computation, which may trigger customisable actions. The termination of
a computation marks the end of its life, and we would expect unconsumed resources
to be transferred to a more suitable computation. The exhaustion of the resources allo-



primitives = call-with-group(F, €, de, ¢;)
| pause(g, ¢p)

| awake(g,€)
g € Group
e € Enegy
F : GroupxEnergy — a
Pe, ¢, ¢p :  Group x Energy — void

Figure 1. Abstract Syntax of Quantum Primitives

cated to a computation may trigger a computation so that for instance more resources
can be supplied.

In order to be notified of the termination or energy exhaustion of a computation,
we introduce an entity that represents the computation. A group is an object that can
be used to refer to a computation in a Quantum program. A group is associated with
a computation composed of several threads proceeding in parallel; in turn, they can
initiate subcomputations by creating subgroups. As a result, our computation model is
hierarchical. A group is said to sponsor [7, 11, 6] the computation it is associated with.
Reciprocally, every computation has a sponsoring group, and so does every thread.
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t, : call-with-group(F, €, ¢e, ¢;)

Figure 2: Group Creation
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Figure 3: Computation and Energy Consumption

At creation time, a group is given an energy quota. More specifically, a computa-
tion that evaluates the expression

call-with-group(F, e, de, ¢;)

under the sponsorship of a group g,, creates a new first-class group g, that is allocated
an initial quota of energy e and whose parent is g,. Furthermore, it initiates a compu-
tation under the sponsorship of g, by calling F with g, and e as argument; hence, the
user function F receives a handle on its sponsoring group. As Quantum keeps track
of resource consumption, the energy e allocated to g, is deducted from the energy of
g,. Figure 2 displays the behaviour of the primitive call-with-group. We see a config-
uration where a group g, is sponsoring two threads t; and t, and a subgroup g itself
sponsoring a thread t,. After evaluating the primitive call-with-group, a new subgroup
g, sponsoring the application of F on g, and e is created; energy is transferred from
g, to g,. This transition assumes that e; > e+ Kq.

Remark In Quantum, every action has an associated cost. Figure 2 shows
that the energy of g, is e; —e — Kg after transition. The value —e is the
amount of energy transferred to the new group g, and —Kq represents the
cost of the group creation operation. O

Quantum enforces the following principle: any computation consumes energy from
its sponsoring group. Therefore, not only is a group perceived as a way of naming
computations, but also it must be regarded as an energy tank for the computation.
Figure 3 displays a thread t evolving to state t’ by performing an action, whose cost e,
is charged to the sponsoring group g;.

In addition, two events may be signalled during the lifetime of a group: group
termination and energy exhaustion are asynchronously notified by applying the user
functions (the notifiers) ¢, and ¢e, respectively®. A group is said to be terminated,
when it has no subgroup and it does not sponsor any thread; i.e. no more activity
can be performed in the group. In Figure 4, when the only thread t, of group g5 is
terminating, the function ¢; is asynchronously called with g5 as argument to notify
its termination, and the energy surplus of g, is transferred back to g,. Note that the
execution of the notifier ¢, is sponsored by g,, i.e. the parent of g..

1Subscript t denotes termination, whereas subscript e denotes exhaustion.
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Figure 4: Termination of a Group

In Figure 5, a computation t,, sponsored by g, requires more energy than available
in g,, the function ¢e is asynchronously called on g, to notify its energy exhaustion,
also under the sponsorship of g,, with transfer of the remaining energy of g, to g,.

Remark An exhaustion notification, like every ZQuantum transition, has
a cost. In order to guarantee that there is enough energy to notify any
occurring exhaustion, we define the “exhaustion threshold” as the cost of
notifying an exhaustion. An exhaustion notification will be raised if the
cost of the current operation is higher than the remaining energy in its
sponsoring group minus the cost of notification. O

Figure 6 displays the state transition diagram for groups. At creation time, a group
is in the running state, which means that the threads that it sponsors can proceed as
long as they do not require more energy than available. Asynchronous notifications are
represented by dotted lines. Once a computation requires more energy than available
in its sponsoring group, the state of its group changes to exhausted, and at the same
time an asynchronous notification ¢e is run. When all the subgroups and all the threads
sponsored by a group terminate, its state becomes terminated, while the asynchronous
notifier ¢; is called. Let us observe that the terminated state is a dead end in the state
diagram; this guarantees the stability of the termination property: once a computation
terminates, it is not allowed to restart (as the resource that it did not consume may have
been reallocated).



Figure 5: Exhaustion of a Group

Energy may be caused to flow between groups, independently of the group hierar-
chy, under the control of the user program. Two primitives operate on groups: pause
and awake. Intuitively, the primitive pause forces a running group and its subgroups
into the exhausted state, and all the energy that was available in this hierarchy is trans-
ferred to the group that sponsored the pause action. The construct awake(g, e) transfers
energy e to the group g, after deducting it from the group sponsoring the awake action.
If the group g is in the exhausted state, its state is changed to running; if the group is
in the terminated state, awake acts as a null operation. Figure 7 displays the behaviour
of awake, assuming that e, > e+ Ka and g, is not terminated.

Let us observe the asymmetric behaviour of pause and awake: the former operates
recursively on a group hierarchy, while the latter acts on a group and not its descen-
dants. However, we might wish to awake a hierarchy recursively, for instance when
we wish to resume a paused parallel search. In particular, we might wish to resume
the search with the energy distribution that existed when the hierarchy was paused.
Unfortunately, such information is no longer available because groups are memory-
less. By this, we mean that a group does not remember the amount of energy it had
before being paused. It is therefore the programmer’s responsibility to leave some in-
formation at pausing-time about the way a hierarchy should be awakened. Not only
does pause transfer energy, but it also posts a notification for each group in the tree.
Figure 8 displays the precise behaviour of pause. Evaluating pause(g,, ¢) forces into
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Figure 6: State Transitions

Figure 7: Awaking a Group

the exhausted state each group g’ in the hierarchy rooted by g,; moreover, for each
g’, an evaluation that calls ¢, with g as argument is created under the sponsorship of
the parent of g’. Let us note that notifications are prevented to run as all groups in the
hierarchy have been dried out (except the notification on the root g,, which is spon-
sored by g, the parent of g; and then might run). Once the root of the hierarchy is
awakened, any notification sponsored by the root will be activated, and may decide to
awake the group it is applied on, and step by step, energy may be redistributed among
the hierarchy.

This section concludes our overview of Quantum. We now investigate how it can
be extended to the distributed setting and how we can support multiple resources.
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Figure 8: Pausing a Group

3 Distributed Resource M anagement

As far as distribution is concerned, we distinguish the transfer of data between hosts
from the transfer of groups between hosts. The former can easily be expressed by send
and receive primitives ‘a la” r-calculus. The latter is reminiscent of remote procedure
calls and migration of mobile agents. Indeed, groups act as sponsors of computations;
if a group changes location, so does the sponsored computation.

In this work, we do not want to impose strong mobility to a programming lan-
guage for the sake of resource management (nor do we require the power of first-class
continuations). We introduce a primitive for migrating a group that is similar to the
invocation of a remote procedure.

We introduce the primitive migrate(h, f), which requires two arguments: h a host
name and f a procedure without argument (a thunk). The effect of the migrate primi-
tive is displayed in Figure 9.

Before transition, on host h,, migrate is called with arguments h, and f, with a
current stack noted as an evaluation context E; [4], and with a sponsoring group g,
containing e, units of energy. After transition, the group g, contains no energy and
sponsors no computation; it can be seen as a “zombie” [12] which acts as a handle
to the remote computation. On host h,, a new group g, is created to sponsor the
application of the thunk f; group g, contains e, units of energy, minus the amount K,
necessary for the migration operation. Let us note that after transition, the execution
thread on h, has disappeared, and on h,, we have not reactivated the execution context
E,: thisis in effect a weak migration. For migration to proceed, we require migrate to
be executed in a group that sponsors only one thread.

The parent of group g, is g;. In Figure 9, we represent g, as a dashed ellipse, be-
cause this group is not explicitly created by the user using the group-creation primitive
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Figure 9: Migration

call-with-group, but it results from a migration. Such a group is referred to as a remote
group. For a remote group, the handlers for termination and exhaustion are defined by
the semantics so as to provide the behaviour described in Figure 10 (a) and (b).

h, h, hy h,
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Figure 10: Return from Migration: (a) Termination — (b) Exhaustion

InFigure 10 (a), when a remote group g, detects the termination of the computation
it sponsors, its energy is transferred back to its parent g,, minus the amount
kkostreturn necessary for the return. After such a transition, termination can then be
detected in g;.

According to Figure 10 (b), exhaustion of g, triggers a propagation of an exhaus-
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tion notification to host h;, under the sponsorship of g;. As such a computation at-
tempts to run under g,, which contains no energy, a notification will also be raised, to
be run under the sponsorship of g,’s parent. If more energy is transferred to g, it will
then be transferred to g,, through the use of the awake primitive.

The reader may observe that, in Figure 10 (b), the activation of a notification under
the sponsorship of g, takes place without being accounted for. We note that a group
exhaustion occurs only once (before the group gets refilled again), and therefore the
cost of notification propagation can be included, i.e. “precharged”, in the cost of group
migration Kp,.

Nothing prevents the thunk activated by a migration to call the migrate primitive
again. Such successive migrations create a sequence of nested remote groups, reminis-
cent of forwarding pointers left by mobile agents. There is an opportunity to shortcut
such sequences of remote groups using a mechanism similar to the collapsing of chains
of pointers [8].

The rationale for requiring a single thread in a group g, before allowing migration
to proceed is the following. After migration, g, acts as a handle for the remote group
0,: exhaustion of g, implies that g, is exhausted; if more energy is transferred to g, it
is passed on to g,. Additionally, chains of such handles can be shortcut easily.

. R
E, [send(c,V)] E,[receive(c)]
M o
E, [void] E,[v]

Figure 11: Synchronous Communications

Figure 11 displays the semantics of synchronous communications using primitives
send and receive. No group is created or migrated here; instead, both sponsoring
groups are charged with the cost of communication K.
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4 Management of Multiple Resources

Section 3 and our previous work focused on a single type of resource, namely processor
time. In particular, in [9], we introduced an abstract notion of energy to denote a
quantity of resources; we defined its meaning as processor time using a notion of
“tick” reminiscent of the one used in Scheme engines [3]. In this Section, we step
backward and study the primitives manipulating energy. We then show that they may
be extended to cope with various (and multiple as well) types of energies. Some design
considerations are also addressed in this Section.

4.1 Operationson energy

From an energy system implementor’s viewpoint, there are only three primitive oper-
ations that deal with energy tanks. These operations target how energy is (i) merged
when a subgroup terminates and gives its energy back to its parent, (ii) consumed
while a group performs some work, and (iii) split between the creating and created
groups.

The following Java interface represents these operations. The receiver of these
messages, an energy-tank, is side-effected by these operations.

i nterface EnergyTank {
voi d mer ge (Energy energy);
bool ean consunme (Energy delta);
Energy split (SplitDescriptor d) throws EnergyExhaustion;

}

The simplest operation is merge that occurs when a group terminates and returns
its remaining energy to its parent. The two energies are then recombined and put
back in the parent’s tank (the receiver of the merge method). A little less simpler is
the consume operation that is repeatedly called to decrement the energy tank of the
working group. The argument is a (request for) energy and the answer is a boolean
telling whether the request is accepted. When the request is accepted, the energy tank
is decremented, that is, consumption is pre-paid. To support concurrent behaviour, the
request and the decrementation are performed atomically.

Creating a group is a more complex operation since the energy of the current group
has to be split into two parts under the user’s control. The energy returned by split
will fill the subgroup’s tank, this returned energy is removed from the energy tank
of the working group (the receiver of the split method). The split operation takes an
argument, a descriptor, specifying how the user wants to split energy. The descriptor
is any type of data that users may safely create to carry their intention (a string, a
percentage, etc.). It cannot be an energy since, for safety reasons, energy should never
be handled directly by users since users may duplicate it, lose it, steal it, etc.

The split operation interprets the descriptor and returns some energy to fill the
freshly created group with the appropriate part of the current energy. In terms of
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energy, if we merge back the split energy into the current tank, we should not create
energy ex nihilo. Thus the following invariant, informally stated, holds:

e.nmerge(e.split(d)) <e

While there is an obvious mapping from energy to numbers specially when energy
is CPU-time or printed pages, other kinds of energy may be expressed using the pre-
vious model. Let us give two different examples illustrating how differently resources
can be merged, consumed and split.

File Permissions The right to read a specific file may be represented as a boolean
energy. We will consider that the consume operation does not exhaust this right?. The
merge disjuncts the two booleans. The split operation receives one of three possible
descriptor strings: “keep”, “give” or “share”. These descriptors allow the new group’s
creator to keep, give or share their right. Table 1 presents an algebraic view of the
operators. Without the permission to read a file, the split operation always return (f, f)
for any split descriptor (denoted by x* in the last line of Table 1).

merge E,xE,—E,;VE,
consume | E; x AE, — E;
split t x keep — (t, f)

t x give — (f,t)

t x share — (t,t)
fx*—(f,f)

Table 1: The boolean energy to read a file.

Migration Hops We may count the number of hosts a computation is allowed to
migrate to in order to restrict the diameter of a distributed computation. The consume
operation triggered by migration decrements the number of allowed hops. The merge
operation ignores the number of hops any terminating subgroup may return to it and
sticks to the initial number of hops it received when created. The split may restrict the
number of hops it gives to the new group while preserving its own number of allowed
hops. The restriction may be expressed with a natural number (p in Table 2). These
definitions allow diameters of distributed computations to be properly nested.

4.2 Multipleenergies

Though hidden from users, energy should be managed by implementors. The imple-
mentation of the interface Ener gy Tank relies on some operations on Ener gy so it

2Alternatively, the write permission on a write-once device would consume the energy at the first
successful attempt to write.
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merge E, xE,—E;
consume | E; xAE, - E; -1
split nxp— (n,min(0,n—p))

Table 2: The energy for hops.

is possible to add, subtract or split energies. Although Object-Oriented, the next in-
terface has no side-effect (as was the case with a tank of energy), it deals with pure
energy.

In the next interface, the quotient, plus and minus operations on energy support the
split, merge and consume tank operations.

interface Energy {
Energy quotient (SplitDescriptor d);
Energy plus (Energy e);
Energy m nus (Energy e) throws EnergyExhausti on;

}

We may now implement a simple Ener gy Tank as:

cl ass Ener gyTankl npl i npl enents EnergyTank {

private Energy _e;

Ener gyTankl npl (Energy e) {
this. e = ¢;

}

Energy split (SplitDescriptor d) throws EnergyExhaustion {
Energy gift = this._e.quotient(d);
this. e =this._e.mnus(gift);
return gift;

}

void nmerge (Energy e) {

this. e =this. _e.plus(e);

}

bool ean consune (Energy de) {
try {
this. e = this._e.mnus(de);
return true;
} catch (EnergyExhaustion ee) {
return fal se;

13



The Ener gy Tank interface copes with one type of energy only. It is a simple
step to extend such an interface to multiple energies, say Ener gi esTank. First, we
suppose an Ener gi esTank to hold a set of Ener gy Tanks. Second, we transfer
sets of energies. Third, the split operation now takes a set of split descriptors and it is
possible from any of them to determine which type of energy it splits.

i nterface Energi esTank {
voi d nmer ge (Energi es energies);
bool ean consune (Energies delta);
Energies split (SplitDescriptors d) throws EnergyExhaustion;

}

The final step is to let the user devise new types of energy (and associated split
descriptors) and have the underlying machinery manage it. It remains to let the user
create an initial amount of the new energy and register it with the current group. Once
registered, this new energy will be managed entirely by the group according to the
user’s split descriptors.

5 Redated Work

A number of existing systems support resources accounting. Telescript [15] featured
“clicks” that are a unit of charge deducted from an agent’s account. JRes and JKernel
[2] support accounting of memory, CPU and network usage. Nomads [13], through a
modified JVM, supports strong migration of agents and resource accounting; in partic-
ular, a limit file is able to specify both quantity limits (such as disk space or memory)
but also rate limits (such as disk usage rate and transfer rate). Java Seal2 [14] is an
extension of Java Seal [1] which provides portable resource accounting. A notion of
process is introduced in KaffeOS [5], a modified JVM, which allows resource control
in a fine manner.

All these systems are complementary to Quantum: indeed, they implement the
accounting of resource usage and they raise a notification when a resource quota is
reached, while Quantum provides the mechanism to transfer (i.e. add or remove) re-
source dynamically between distributed computations. Quantum also provides a pro-
gramming model to support the execution of asynchronous notifications, under the
control of the same resource management system. Notifications are therefore becom-
ing a key programming technique that can be made available to the programmer. Ad-
ditionally, our model also supports resources they do not necessarily have a physical
reality, but can be defined in an application-specific setting.
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Java Seal [1] is able to migrate nested seals. On the contrary, our proposed model
only supports migration of leaf groups. Additionally, our model does not make any
assumption on the programming language, and allows migration of a group only if it
sponsors a single thread — the thread itself is not migrated, but it essentially initi-
ates a remote method invocation, i.e. weak migration. On the other hand, our pause
operation is recursive, and is able to pause recursively a whole hierarchy of groups.

6 Conclusion

In this paper, we have extended Quantum, our framework of resource management
to the distributed setting, by introducing explicit remote method invocation (or weak
migration) and multiple types of resources. Quantum itself does not provide the ac-
counting mechanism, but it sits on top of such a mechanism to provide a programmatic
interface that can be used by resource consumers and providers to program complex
distributed applications and their hosting platforms.

Our generic model of resource consumption was successfully applied to many
types of resources, including: processor time, wall-clock time, file permissions, write-
once objects (such as future placeholders), number of messages, memory and disk
usage, migration hops, etc. The same framework is also able to express throughputs
and rates, such as message rates, bandwidth, migration frequency, etc.
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