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Motivations

I Theoretical: investigate subclasses of hybrid automata with stopwatches, to
obtain decidability results in view of negative results, among them:

I Henzinger et al. 1998: The reachability problem is decidable for rectangular
initalized automata, but becomes undecidable for slight extensions, e.g. adding
one stopwatch to timed automata.

I Cassez, Larsen 2000: Linear hybrid automata and automata with stopwatches
(and unobservable delays) are equally expressive.

I Bouyer, Brihaye, Bruyère, Markey, Raskin 2006: Model checking timed
automata with stopwatch observers is undecidable for WCTL (a weighted
extension of CTL).

I Practical: Many real-time systems include interruptions (as in processors).
An interrupt clock can be seen as a restricted type of stopwatch.



3/24

Interruptions and real-time
Several levels with exactly one active clock at each level
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Interrupt Timed Automata (ITA)

A = (Σ, X, Q, q0, F, λ, pol, ∆)

I The mapping λ associates a level in {1, . . . , n} with each state, xλ(q) is the
active clock in state q

I The mapping pol associates a timing policy with each state: U for urgent,
D for delayed and L for lazy

I Transitions in ∆:
q, k, p q′, k′, p′

g, a, u

guard action update

Guard: conjunction of linear constraints on clocks from levels j ≤ k∑k

j=1 ajxj + b ./ 0, with constants in Q

q, 3
2x3 −

1
3x2 + x1 + 1 > 0
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Updates in ITA
From level k to level k′

Increasing level

Clocks of level greater than k′ are unchanged, clocks with level from k + 1 up to k′

are reset, and clocks from level less than or equal to k may be updated by a linear
expression xi :

∑
j<i ajxj + b.

Example

Strictly decreasing level

Clocks of level greater than k′ are unchanged and all other clocks (including the one
at level k′) may be updated by a linear expression xi :=

∑
j<i ajxj + b.

Remark: in a state at level k, all clocks from higher levels are irrelevant.
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q1, 2 q2, 4

x2 > 2x1,
x1 := 1
x2 := 2x1

(x3 := 0, x4 := 0)
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Updates in ITA
From level k to level k′

Increasing level

Clocks of level greater than k′ are unchanged, clocks with level from k + 1 up to k′

are reset, and clocks from level less than or equal to k may be updated by a linear
expression xi :

∑
j<i ajxj + b.

Example

q1, 2 q2, 4

x2 > 2x1,
x1 := 1
x2 := 2x1

(x3 := 0, x4 := 0)
q3, 3

x3 = 3x1 + x2,
x1 := 0
x2 := x1 + 1,
x3 := 2x2

Strictly decreasing level

Clocks of level greater than k′ are unchanged and all other clocks (including the one
at level k′) may be updated by a linear expression xi :=

∑
j<i ajxj + b.

Remark: in a state at level k, all clocks from higher levels are irrelevant.
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Semantics

For an ITA A

A transition system TA = (S, s0,→), with

I configurations S = {(q, v, b) | q ∈ Q, v ∈ RX , b ∈ {⊥,>}},

I initial configuration (q0,0,⊥),

I transition relation →

Time step: only the active clock evolves in a state (q, k, p)

I (q, v, b)
d
−→ (q, v′,>), where v′(xk) = v(xk) + d and

v′(x) = v(x) for the other clocks.
I If p = U , no time step is allowed.

Discrete step: I (q, v, b)
a
−→ (q′, v′,⊥) if there is a transition q

ϕ,a,u
−−−→ q′ in ∆

such that v |= ϕ and v′ = v[u].
I If p = D ∧ b = ⊥, then discrete steps are disallowed.

Language

L(A) is the set of (finite) timed words associated with a path in TA from (q0,0) to
some configuration (qf , v), for some qf ∈ F .
ITL : family of languages accepted by ITA.
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Examples

A1:

q0, 1 q1, 2 q2, 2
x1 < 1, a, (x2 := 0) x1 + 2x2 = 1, b

accepts L1 = {(a, 1 − τ)(b, 1 − τ/2) | 0 < τ ≤ 1}, with trajectories in:

x1

x2

0 1

1
2

Light gray zone for state q1:

(0 < x1 < 1, 0 < x2 < − 1
2x1 + 1

2 )
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Examples

A1:

q0, 1 q1, 2 q2, 2
x1 < 1, a, (x2 := 0) x1 + 2x2 = 1, b

accepts L1 = {(a, 1 − τ)(b, 1 − τ/2) | 0 < τ ≤ 1}, with trajectories in:

x1

x2

0 1

1
2

Light gray zone for state q1:

(0 < x1 < 1, 0 < x2 < − 1
2x1 + 1

2 )

A2:

q0, 1 q1, 2
x1 > 0, a, (x2 := 0)

x2 = x1, a, x2 := 0

accepts L2 = {(a, τ)(a, 2τ) . . . (a, nτ) | n ∈ N, τ > 0}.
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A generalized region automaton

Theorem

For a language L in ITL, Untime(L) is effectively regular.

Principle: For an ITA A = (Σ, X, Q, q0, F, λ, pol, ∆)

A finite set Exp(q) of linear expressions is associated with each state q ∈ Q.
Exp(q) =

⋃
k≤λ(q) Ek, where the sets Ek = {0, xk} are obtained iteratively down-

ward:

I adding the complements of xk in guards from level k,

I saturating Ek by applying updates of appropriate transitions
to expressions of Ek,

I saturating Ej (j < k) by applying updates of appropriate transitions
to differences of expressions of Ek.

Two valuations are equivalent in state q with level k if they produce the same
preorders for linear expressions in each Ei, i ≤ k.

I A class is a pair R = (q, {�k}k≤λ(q)) where �k is a total preorder on Ek.

I Time successors R −→ R′ and discrete steps R
a
−→ R′ are then defined.
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Example
For automaton A3

q0, 1 q1, 2 q2, 2
x1 < 1, a, (x2 := 0) x1 + 2x2 = 2, b

x1

x2

0 2

1

1a

b

E1 = {x1, 0, 1, 2} and E2 = {x2, 0,− 1
2x1 + 1}

R0 = (q0, Z0) with Z0 : x1 = 0 < 1 < 2

Time successors of R0 are Ri
0 = (q0, Z

i
0) with:

Z1
0 = (0 < x1 < 1 < 2), Z2

0 = (0 < x1 = 1 < 2), Z3
0 = (0 < 1 < x1 < 2),

Z4
0 = (0 < 1 < x1 = 2) and Z5

0 = (0 < 1 < 2 < x1)

Discrete transitions with action a : R0
a
−→ R1 = (q1, Z0, x2 = 0 < 1

2 ), since x1 = 0,

and R1
0

a
−→ R1

1 = (q1, Z
1
0 , x2 = 0 < − 1

2x1 + 1)

Discrete transitions with action b : from classes such that x2 = − 1
2x1 + 1.
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Example (cont.)

R0

R1
0

...

R5
0

R1
q1, Z0

0 < x2 < 1
q1, Z0

0 < x2 = 1

q2, Z0

0 < x2 = 1

q2, Z0

0 < 1 < x2

R1
1

q1, Z
1
0

0 < x2 < − 1
2x1 + 1

q1, Z
1
0

0 < x2 = − 1
2x1 + 1

q2, Z
1
0

0 < x2 = − 1
2x1 + 1

q2, Z
1
0

0 < − 1
2x1 + 1 < x2

a

a

b

b
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ITA− and reachability

An elementary path in the previous graph can be non deterministically guessed in
2-EXPSPACE leading to the decidability of reachability.

The subclass ITA
−

An ITA− is an ITA where updates are restricted to transitions increasing the level,
only for the current clock (apart from initializations).

I Reachability in ITA− is decidable in NEXPTIME (existence of an
exponentially bounded path).

I An ITA can be transformed into an doubly exponentially larger ITA− with the
same clocks accepting the same language.

I Reachability in ITA is decidable in 2-NEXPTIME by combination of these
results.

I When the number of clocks is fixed, the reachability problem is NP.
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From ITA to ITA−

Principle: Record the forbidden resets in the states

Apply them when needed and use urgent state copies to decrease level.

Example

q0, 2

q1, 2

q2, 3 q3, 3

q4, 3

q5, 2

x1 := 2 2x2 + x1 > 3, x3 < 2

x2 := 2x1 + 1

x2 := x1 + 1
x3 := 2x2

x1 := 1
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From ITA to ITA−

Principle: Record the forbidden resets in the states

Apply them when needed and use urgent state copies to decrease level.

Example

q0, 2

q1, 2

q2, 3 q3, 3

q4, 3

q5, 2

x1 := 2 2x2 + x1 > 3, x3 < 2

x2 := 2x1 + 1

x2 := x1 + 1
x3 := 2x2

x1 := 1

q+
0 , 2

q+
2 , 3

x1 := 2

q+
3 , 3

x1 := 2
x2 := 5

q+
4 , 3

x1 := 2
x2 := 3

q−5 , 2
x1 := 1
x2 := 5

q+
5 , 2

x1 := 1

2x2 + 2 > 3
x3 < 2 x3 := 10

ε, x2 := 5
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From ITA to ITA−

Principle: Record the forbidden resets in the states

Apply them when needed and use urgent state copies to decrease level.

Example

q0, 2

q1, 2

q2, 3 q3, 3

q4, 3

q5, 2

x1 := 2 2x2 + x1 > 3, x3 < 2

x2 := 2x1 + 1

x2 := x1 + 1
x3 := 2x2

x1 := 1

q+
1 , 2 q+

2 , 3
q+
3 , 3

x2 := 2x1 + 1
q+
4 , 3

x2 := x1 + 1

q−5 , 2
x1 := 1

x2 := 2x1 + 1

q+
5 , 2

x1 := 1

2x2 + x1 > 3
x3 < 2 x3 := 4x1 + 2

ε, x2 := 2x1 + 1
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ITL is neither contained in TL nor in CRTL

Comparing with TA (Timed Automata)

There is no timed automaton accepting L1 or L2.

A1:

q0, 1 q1, 2 q2, 2
x1 < 1, a x1 + 2x2 = 1, b

A2:
q0, 1 q1, 2

x1 > 0, a
x2 = x1, a, x2 := 0

Comparing with CRTA (Controlled Real-Time Automata)

Demichelis, Zielonka, 1998:
There is no controlled real-time automaton accepting L2.
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TL is not contained in ITL

A pumping Lemma

For a language L in ITL, there exists B ∈ N s.t.
given any word (with strictly increasing dates) belonging to L with B consecutive
positions , there are two (possibly equal) positions s.t. the subword between these
positions can be

I Either duplicated with a non null time shift greater or equal than its duration,

I Or erased without time shift (in this case the subword is non empty)

and the new word still belongs to L.

ITL and TL are incomparable

A language L3 accepted by a TA but not by any ITA:

x = 1, a, x := 0 0 < x < 1, b, y := 0

x = 1, a, x := 0

0 < x ∧ y < 1, b, y := 0
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Closure results

ITL is not closed under complement: Lc

3 is in ITL

ITL is not closed under intersection : L3 is the intersection of the two
following ITL

I (a, 1)(b, τ1) . . . (a, n)(b, τn) with ∀1 ≤ i ≤ n i < τi < i + 1

I (a, τ ′
1)(b, τ1) . . . (a, τ ′

n)(b, τn) with ∀1 ≤ i ≤ n − 1 τi+1 − τi < 1
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Combining ITA and CRTA

into ITA+

I A set Q of states with either a color or a level, and a velocity.

I A set X of interrupt clocks and a set Y of clocks with the features of CRTA
clocks: color, lower and upper bound.
Clocks with the color of the state are active in this state with same velocity.
Exactly one interrupt clock active in states with a level.

I guards are of the form ϕ1 ∧ ϕ2, with ϕ1 a guard on X and ϕ2 a guard on Y ,
with the constraints of their respective models,

I updates are of the form u1 ∧ u2, with u1 an update on X and u2 an update
on Y , also with the constraints of their respective models.

Reachability

The reachability problem remains decidable in the class ITA+.
It belongs to 2-NEXPTIME (NEXPTIME with ITA+

−) and is PSPACE-complete when
the number of interrupt clocks is fixed.
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An example of ITA+

A login procedure

init wait log

out

I, 1

y = 0, p y < 1 ∧ z < 6, ok

y ≤ 1 ∧ z = 6, to, z := 0

z = 50, rs, z := 0, y := 0

y ≤ 1 ∧ z < 6, er, y := 0 y < 1 ∧ z < 6, i, (x1 := 0)

x1 < 3 ∨ z < 3, cont, y := 0

x1 ≥ 3 ∧ z ≥ 3, rs, y := 0, z := 0
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Conclusion and perspectives

Summary of results

I An appropriate model for a frequent pattern of discrete-event systems.

I Decidability of the reachability problem and contrasting complexity results.

I Incomparability with TA motivating a “decidable” combination of models.

Perspectives

I Lower bounds for the reachability problem.

I Model-checking ITA.
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