Intersection of regular signal-event (timed) languages

Béatrice Bérard

LAMSADE Université Paris-Dauphine & CNRS Beatrice.Berard@dauphine.fr

Joint work with Paul Gastin and Antoine Petit

FORMATS, September 26th, 2006

Outline

Introduction

Signal-Event (Timed) Words and Automata

Closure under intersection

Conclusion

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q @ 2/21

is well known for regular languages

accepts $L_1 = e^+ f^+$

accepts $L_2=(ef)^*$

accepts $L_1 = e^+ f^+$

accepts $L_2 = (ef)^*$

<□ ▶ < @ ▶ < 注 ▶ < 注 ▶ 三 の Q @ 3/21

is a nice property

An implementation $\mathcal{I} = \mathcal{L}(\mathcal{M})$ cannot behave badly as specified by $\mathcal{B} = \mathcal{L}(\mathcal{P})$:

 $\mathcal{L}(\mathcal{M})\cap\mathcal{L}(\mathcal{P})=\emptyset$

Build a machine \mathcal{A} in the same class as \mathcal{M} and \mathcal{P} such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{P})$ and test emptiness in this class. Many other applications (see next talk).

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三 の � � 4/21

The construction has been extended to

- automata for infinite words: Büchi
- automata for timed words: Alur Dill 1990

automata for signal-event words

is a nice property

An implementation $\mathcal{I} = \mathcal{L}(\mathcal{M})$ cannot behave badly as specified by $\mathcal{B} = \mathcal{L}(\mathcal{P})$:

 $\mathcal{L}(\mathcal{M})\cap\mathcal{L}(\mathcal{P})=\emptyset$

Build a machine \mathcal{A} in the same class as \mathcal{M} and \mathcal{P} such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{P})$ and test emptiness in this class. Many other applications (see next talk).

(ロト、同ト、ヨト、ヨト、ヨ、のへで 4/21

The construction has been extended to

automata for infinite words: Büchi

automata for timed words: Alur - Dill 1990

automata for signal-event words

?

is a nice property

An implementation $\mathcal{I} = \mathcal{L}(\mathcal{M})$ cannot behave badly as specified by $\mathcal{B} = \mathcal{L}(\mathcal{P})$:

 $\mathcal{L}(\mathcal{M})\cap\mathcal{L}(\mathcal{P})=\emptyset$

Build a machine \mathcal{A} in the same class as \mathcal{M} and \mathcal{P} such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{P})$ and test emptiness in this class. Many other applications (see next talk).

The construction has been extended to

- automata for infinite words: Büchi
- automata for timed words: Alur Dill 1990

automata for signal-event words

is a nice property

An implementation $\mathcal{I} = \mathcal{L}(\mathcal{M})$ cannot behave badly as specified by $\mathcal{B} = \mathcal{L}(\mathcal{P})$:

 $\mathcal{L}(\mathcal{M})\cap\mathcal{L}(\mathcal{P})=\emptyset$

Build a machine \mathcal{A} in the same class as \mathcal{M} and \mathcal{P} such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{P})$ and test emptiness in this class. Many other applications (see next talk).

(ロト、同ト、ヨト、ヨト、ヨ、のへで 4/21

The construction has been extended to

- automata for infinite words: Büchi
- > automata for timed words: Alur Dill 1990

automata for signal-event words

?

Outline

Introduction

Signal-Event (Timed) Words and Automata

Closure under intersection

Conclusion

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ = り < ⊙ 5/21

Signal-Event (Timed) Automata

Signal-event word : $ok^{8.2} p$ fault³ alarm^{1.5} $r \dots$

- States emit (possibly hidden) signals
- Transitions emit (instantaneous, possibly silent) events
- Clocks are used for time constraints

Signal-Event (Timed) Automata

8.2 p 4.5 r ... or equivalently $(p, 8.3)(r, 12.7) \dots$

States emit (possibly hidden) signals

- Transitions emit (instantaneous, possibly silent) events
- Clocks are used for time constraints

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- \mathbb{T} time domain, $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\blacktriangleright \Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a, d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} : set of finite and infinite words over Σ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三 の � � 7/21

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- \mathbb{T} time domain, $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} : set of finite and infinite words over Σ

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- \mathbb{T} time domain, $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} : set of finite and infinite words over Σ

Signal stuttering

$$a^2 a^3 \approx a^5$$
, $a^1 \approx a^{\frac{1}{2}} a^{\frac{1}{4}} a^{\frac{1}{8}} \dots$, $a^{\infty} = a^2 a^2 a^2 \dots$

Observation of signal a is not interrupted by an internal (instantaneous) action ε

Unobservable signal τ

Useful to hide signals:

Signal-event word

hiding signals

time-event word

$a^3 f b^1 g f a^2 f$

$$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$$

• $\tau^0 \approx \varepsilon$: a hidden signal with zero duration is not observable. $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable. $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden. Example: $a^2 \tau^0 a^1 f \tau^0 g \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f g \tau^1 f b^\infty$

- $SE(\Sigma) = \Sigma^{\infty} / \approx$: signal-event words
- SEL_{ε} : languages accepted by SE-automata
- ▶ SEL : languages accepted by SE-automata without ε -transitions

Unobservable signal τ • Useful to hide signals: Signal-event word $\xrightarrow{\text{hiding signals}}$ time-event word $a^3fb^1gfa^2f$ $\tau^3f\tau^1gf\tau^2f = (f,3)(g,4)(f,4)(f,6)$ • $\tau^0 \approx \varepsilon$: a hidden signal with zero duration is not observable. $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable. $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden. Example : $a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots \approx a^3fg\tau^1fb^\infty$

- $SE(\Sigma) = \Sigma^{\infty} / \approx$: signal-event words
- SEL_{ε} : languages accepted by SE-automata
- ▶ SEL : languages accepted by SE-automata without ε -transitions

Unobservable signal τ Useful to hide signals: hiding signals Signal-event word time-event word $\tau^3 f \tau^1 q f \tau^2 f = (f,3)(q,4)(f,4)(f,6)$ $a^3 f b^1 a f a^2 f$ • $\tau^0 \approx \varepsilon$: a hidden signal with zero duration is not observable. $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable. $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden. Example : $a^2 \tau^0 a^1 f \tau^0 a \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f a \tau^1 f b^\infty$ • $SE(\Sigma) = \Sigma^{\infty} / \approx$: signal-event words

- SEL_{ε} : languages accepted by SE-automata
- ▶ SEL : languages accepted by SE-automata without ε -transitions

Outline

Introduction

Signal-Event (Timed) Words and Automata

Closure under intersection

Conclusion

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ _{9/21}

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class *SEL* or for time-event languages.
- More difficult with signals and ε-transitions due to stuttering and unobservability of τ⁰.
- Asarin, Caspi and Maler 97 does not handle signal stuttering and considers finite runs only.
 - Asarin, Caspi and Maler 02 deals with the intersection of time-event automata only.
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
 His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- ▶ Easy for the class *SEL* or for time-event languages.
- More difficult with signals and ε -transitions due to stuttering and unobservability of τ^0 .
- Asarin, Caspi and Maler 97 does not handle signal stuttering and considers finite runs only.
 Asarin, Caspi and Maler 02 deals with the intersection of time-event automation
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
 His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- ▶ Easy for the class *SEL* or for time-event languages.
- More difficult with signals and ε -transitions due to stuttering and unobservability of τ^0 .
- Asarin, Caspi and Maler 97 does not handle signal stuttering and considers finite runs only.
 Asarin, Caspi and Maler 02 deals with the intersection of time-event automat
 - only.
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
 His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- ▶ Easy for the class *SEL* or for time-event languages.
- More difficult with signals and ε -transitions due to stuttering and unobservability of τ^0 .
- Asarin, Caspi and Maler 97 does not handle signal stuttering and considers finite runs only.
 Asarin, Caspi and Maler 02 deals with the intersection of time-event automata only.
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
 His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL or for time-event languages.
- More difficult with signals and ε -transitions due to stuttering and unobservability of τ^0 .
- Asarin, Caspi and Maler 97 does not handle signal stuttering and considers finite runs only.
 Asarin, Caspi and Maler 02 deals with the intersection of time-event automata only.
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
 His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL or for time-event languages.
- More difficult with signals and ε -transitions due to stuttering and unobservability of τ^0 .
- Asarin, Caspi and Maler 97 does not handle signal stuttering and considers finite runs only.
 Asarin, Caspi and Maler 02 deals with the intersection of time-event automata only.
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
 His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and $\mathit{SEL}_{\varepsilon}$ are closed under intersection

Theorem

Classes SEL and SEL_{ε} are closed under intersection

Basic technique for *SEL* or time-event words

$$\begin{array}{c} p_1 \\ a, I_1 \end{array} \begin{array}{c} g, f, \alpha \\ b, J_1 \end{array} \end{array} \begin{array}{c} q_1 \\ b, J_1 \end{array} \end{array} \begin{array}{c} p_2 \\ a, I_2 \end{array} \begin{array}{c} h, f, \beta \\ b, J_2 \end{array} \end{array} \begin{array}{c} q_2 \\ b, J_2 \end{array}$$

$$egin{aligned} p_1,p_2 & g \wedge h, \ f, \ \alpha \cup eta & g_1,q_2 \ a, \ I_1 \wedge I_2 & b, J_1 \wedge J_2 \end{aligned}$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ • ⑦ Q ⑦ 11/21

Theorem

 $\mathit{SEL}_{\varepsilon}$ is closed under intersection

Problem 1 : stuttering with unobservability of au^0

Theorem

 $\mathit{SEL}_{\varepsilon}$ is closed under intersection

Problem 1 : stuttering with unobservability of au^0

$$\mathcal{B}_{2}: \quad \longrightarrow \begin{array}{c} q_{1} \\ \tau \\ \varepsilon \end{array} \begin{array}{c} \varepsilon \\ a \end{array} \begin{array}{c} \varepsilon \\ b \end{array} \begin{array}{c} q_{3} \\ b \end{array} \begin{array}{c} \bullet \\ b \end{array} \begin{array}{c} q_{3} \\ b \end{array} \begin{array}{c} \bullet \\ \end{array} \begin{array}{c} \bullet \\ b \end{array} \end{array}$$

Problem 2 : finite and infinite runs

$$\mathcal{A}_1:$$
 \longrightarrow a $x \ge 1, \varepsilon$ a \longrightarrow a

$$\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) = \{a^1\}$$

$$\mathcal{A}_2:$$
 \longrightarrow $a^1 \approx a^{\frac{1}{2}}a^{\frac{1}{4}}a^{\frac{1}{8}}\cdots$

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ 毫 の Q @ 12/21

Stuttering with unobservability of au^0

Connecting modules for *a*-blocks with synchronous transitions

Stuttering with unobservability of au^0

Building maximal *a*-blocks

States : (a, p, q, i), where i is the synchronization mode.

◆□▶◆□▶◆ミ▶◆ミ▶ ミ のへで 14/21

with $a \neq \tau$ and asynchronous ε -transitions that reset clock z.

The *a*-block for \mathcal{B}_1 and \mathcal{B}_2

To be completed with a τ -block and a *b*-block.

◆□▶◆舂▶◆≧▶◆≧▶ 差 釣へで 15/21

To be completed with a τ -block and a b-block.

To be completed with a τ -block and a b-block.

Example (cont.)

Theorem : a normal form for SE-automata

Let ${\mathcal A}$ be a SE-automaton. We can effectively construct an equivalent SE-automaton ${\mathcal A}'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- ▶ The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^{1} .
- **Easy** if Zeno runs or *ε*-transitions are forbidden.
- The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Theorem : a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- ► The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .
- Easy if Zeno runs or ε -transitions are forbidden.
- The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Theorem : a normal form for SE-automata

Let ${\mathcal A}$ be a SE-automaton. We can effectively construct an equivalent SE-automaton ${\mathcal A}'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- ► The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .
- Easy if Zeno runs or ε -transitions are forbidden.
- The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Theorem : a normal form for SE-automata

Let ${\mathcal A}$ be a SE-automaton. We can effectively construct an equivalent SE-automaton ${\mathcal A}'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- ► The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .
- Easy if Zeno runs or ε -transitions are forbidden.
- The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Theorem: a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

Main problem

We have to replace infinite accepting ε -loops

by finite accepting runs.

Theorem: a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}^\prime accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

Main problem

We have to replace infinite accepting ε -loops

by finite accepting runs.

Theorem: a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}^\prime accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

Main problem

We have to replace infinite accepting ε -loops

by finite accepting runs.

$$\underbrace{g_0, f, \alpha_0}_{I_1} \underbrace{a}_{I_1} \underbrace{g, \varepsilon, \alpha}_{I} \underbrace{a}_{I} \underbrace{a}_{I} \underbrace{a}_{I} \underbrace{f, \alpha_0}_{I} \underbrace{g, \varepsilon, \alpha}_{I} \underbrace{a}_{I} \underbrace{g, \varepsilon, \alpha}_{I} \underbrace{g, \varepsilon, \alpha}_$$

Simulating the loop

 $y > 1, \varepsilon, \{x\}$ q_2, a $f, \{y\}$ q_1, a $x > 0, \varepsilon$ q_3, τ y < 3 q_0

Simulating the loop

Outline

Introduction

Signal-Event (Timed) Words and Automata

Closure under intersection

Conclusion

Conclusion

- Extending classical results to SE-automata is not always easy due to ε -transitions, signal stuttering, unobservability of τ^0 , Zeno runs, ...
- ► We have proved closure under intersection for the general case of languages accepted by SE-automata.
- Signal-event words are natural objects for studying refinements and abstractions, see next talk.