
1/46

Modeling, Verification and Applications

of Explicit Time Models

Béatrice Bérard

LAMSADE

Université Paris-Dauphine & CNRS

berard@lamsade.dauphine.fr

ANR Project DOTS

PNTAP’08, March 3rd 2008

2/46

Verification is necessary

especially...

2/46

Verification is necessary

especially...

for critical systems

3/46

Classical verification problems
I reachability of a control state

I S ∼ S ′ bisimulation, etc.

I L(S) ⊆ L(S ′) language inclusion

I S |= ϕ for some formula ϕ model-checking

I reachability on S ‖ AT , product of S with testing automaton AT

I . . .

3/46

Classical verification problems
I reachability of a control state

I S ∼ S ′ bisimulation, etc.

I L(S) ⊆ L(S ′) language inclusion

I S |= ϕ for some formula ϕ model-checking

I reachability on S ‖ AT , product of S with testing automaton AT

I . . .

system

3/46

Classical verification problems
I reachability of a control state

I S ∼ S ′ bisimulation, etc.

I L(S) ⊆ L(S ′) language inclusion

I S |= ϕ for some formula ϕ model-checking

I reachability on S ‖ AT , product of S with testing automaton AT

I . . .

system

Modeling

S

3/46

Classical verification problems
I reachability of a control state

I S ∼ S ′ bisimulation, etc.

I L(S) ⊆ L(S ′) language inclusion

I S |= ϕ for some formula ϕ model-checking

I reachability on S ‖ AT , product of S with testing automaton AT

I . . .

systemDoes the meet its specification ?

Modeling

S

3/46

Classical verification problems
I reachability of a control state

I S ∼ S ′ bisimulation, etc.

I L(S) ⊆ L(S ′) language inclusion

I S |= ϕ for some formula ϕ model-checking

I reachability on S ‖ AT , product of S with testing automaton AT

I . . .

systemDoes the meet its specification ?

Modeling

S
ϕ

3/46

Classical verification problems
I reachability of a control state

I S ∼ S ′ bisimulation, etc.

I L(S) ⊆ L(S ′) language inclusion

I S |= ϕ for some formula ϕ model-checking

I reachability on S ‖ AT , product of S with testing automaton AT

I . . .

systemDoes the meet its specification ?

Modeling

S
ϕ|=

model-checking
algorithm

4/46

Why add time ?

The gas burner example [ACHH93]

The gas burner may leak and :

I each time a leakage is detected, it is repaired or stopped in less than 1s

I two leakages are separated by at least 30s

Leaking Not leaking

stop

start

Is it possible that the gas burner leaks during a time greater than 1

20
of the global

time after the first 60s?

Timed features are needed in the model and in the properties:

Instead of observing a sequence of events a1a2 . . .,
observe a sequence of pairs (a1, t1)(a2, t2) . . . where ti is the time at which ai occurs.

4/46

Why add time ?

The gas burner example [ACHH93]

The gas burner may leak and :

I each time a leakage is detected, it is repaired or stopped in less than 1s

I two leakages are separated by at least 30s

Leaking Not leaking

stop

start

Is it possible that the gas burner leaks during a time greater than 1

20
of the global

time after the first 60s?

Timed features are needed in the model and in the properties:

Instead of observing a sequence of events a1a2 . . .,
observe a sequence of pairs (a1, t1)(a2, t2) . . . where ti is the time at which ai occurs.

5/46

Outline

Timed Models

Verification

Applications

Conclusion

6/46

Outline

Timed Models

Verification

Applications

Conclusion

7/46

Transition systems

Definition
Act alphabet of actions

T = (S, s0, E) transition system

I S set of configurations, s0 initial configuration,

I E ⊆ S ×Act× S contains

action transitions: s
a
−→ s′, instantaneous execution of a

Example: a finite automaton

An execution:

ok
p
−→ fault

r
−→ ok

p
−→ fault

h
−→ alarm

r
−→ ok −→ · · ·

7/46

Transition systems

Definition
Act alphabet of actions

T = (S, s0, E) transition system

I S set of configurations, s0 initial configuration,

I E ⊆ S ×Act× S contains

action transitions: s
a
−→ s′, instantaneous execution of a

Example: a finite automaton

ok fault

alarm

h

p

r

rw

w working, p problem

r return, h handling

An execution:

ok
p
−→ fault

r
−→ ok

p
−→ fault

h
−→ alarm

r
−→ ok −→ · · ·

7/46

Transition systems

Definition
Act alphabet of actions

T = (S, s0, E) transition system

I S set of configurations, s0 initial configuration,

I E ⊆ S ×Act× S contains

action transitions: s
a
−→ s′, instantaneous execution of a

Example: a finite automaton

ok fault

alarm

h

p

r

rw

w working, p problem

r return, h handling

An execution:

ok
p
−→ fault

r
−→ ok

p
−→ fault

h
−→ alarm

r
−→ ok −→ · · ·

8/46

Timed Transition Systems

Definition
Act alphabet of actions,

T = (S, s0, L, E) transition system

I S set of configurations, s0 initial configuration,

I E ⊆ S ×Act× S contains

action transitions: s
a
−→ s′, instantaneous execution of a

delay transitions: s
d
−→ s′, time elapsing for d time units.

8/46

Timed Transition Systems

Definition
Act alphabet of actions, T time domain contained in R≥0,

T = (S, s0, L, E) timed transition system

I S set of configurations, s0 initial configuration,

I E ⊆ S × (Act ∪ T) × S contains

action transitions: s
a
−→ s′, instantaneous execution of a

delay transitions: s
d
−→ s′, time elapsing for d time units.

9/46

Why not discretize ?

A time switch

OFF ON

b

o
b b button pressed

o light off

Unfolding with discrete time

when adding the constraint: the light stays on exactly 3 time units once the button
is pressed.

may lead to state explosion.

9/46

Why not discretize ?

A time switch

OFF ON

b

o
b b button pressed

o light off

Unfolding with discrete time

when adding the constraint: the light stays on exactly 3 time units once the button
is pressed.

OFF ON0

ON1ON2ON3

1

b

11

b
be

b

1 wait for 1 t.u.

may lead to state explosion.

10/46

Discussion: reachable configurations
for asynchronous digital circuits [Alur 1991] [Brzozowski Seger 1991]

Start with x=0 and y=[101] (stable configuration)

Input x changes to 1. The corresponding stable configuration is y=[011]

However, many possible behaviours, e.g.

[101]
y2

−→
1.2

[111]
y3

−→
2.5

[110]
y1

−→
2.8

[010]
y3

−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}

10/46

Discussion: reachable configurations
for asynchronous digital circuits [Alur 1991] [Brzozowski Seger 1991]

Start with x=0 and y=[101] (stable configuration)

Input x changes to 1. The corresponding stable configuration is y=[011]

However, many possible behaviours, e.g.

[101]
y2

−→
1.2

[111]
y3

−→
2.5

[110]
y1

−→
2.8

[010]
y3

−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}

10/46

Discussion: reachable configurations
for asynchronous digital circuits [Alur 1991] [Brzozowski Seger 1991]

Start with x=0 and y=[101] (stable configuration)

Input x changes to 1. The corresponding stable configuration is y=[011]

However, many possible behaviours, e.g.

[101]
y2

−→
1.2

[111]
y3

−→
2.5

[110]
y1

−→
2.8

[010]
y3

−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}

10/46

Discussion: reachable configurations
for asynchronous digital circuits [Alur 1991] [Brzozowski Seger 1991]

Start with x=0 and y=[101] (stable configuration)

Input x changes to 1. The corresponding stable configuration is y=[011]

However, many possible behaviours, e.g.

[101]
y2

−→
1.2

[111]
y3

−→
2.5

[110]
y1

−→
2.8

[010]
y3

−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}

10/46

Discussion: reachable configurations
for asynchronous digital circuits [Alur 1991] [Brzozowski Seger 1991]

Start with x=0 and y=[101] (stable configuration)

Input x changes to 1. The corresponding stable configuration is y=[011]

However, many possible behaviours, e.g.

[101]
y2

−→
1.2

[111]
y3

−→
2.5

[110]
y1

−→
2.8

[010]
y3

−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}

11/46

A circuit which is not 1-discretizable

Why? initially x = 0 and y = [11100000], then x is set to 1

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

11/46

A circuit which is not 1-discretizable

Why? initially x = 0 and y = [11100000], then x is set to 1

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

11/46

A circuit which is not 1-discretizable

Why? initially x = 0 and y = [11100000], then x is set to 1

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

11/46

A circuit which is not 1-discretizable

Why? initially x = 0 and y = [11100000], then x is set to 1

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

11/46

A circuit which is not 1-discretizable

Why? initially x = 0 and y = [11100000], then x is set to 1

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

11/46

A circuit which is not 1-discretizable

Why? initially x = 0 and y = [11100000], then x is set to 1

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

11/46

A circuit which is not 1-discretizable

Why? initially x = 0 and y = [11100000], then x is set to 1

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

12/46

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a circuit such that the set of reachable states is strictly
larger in dense time than in discrete time (with granularity 1

k
).

Consequence

Finding a correct granularity may be as difficult as computing the set of reachable
states in dense-time

Furthermore
there exist systems for which no discrete execution is possible, whatever the granu-
larity choice.

(see later)

12/46

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a circuit such that the set of reachable states is strictly
larger in dense time than in discrete time (with granularity 1

k
).

Consequence

Finding a correct granularity may be as difficult as computing the set of reachable
states in dense-time

Furthermore
there exist systems for which no discrete execution is possible, whatever the granu-
larity choice.

(see later)

12/46

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a circuit such that the set of reachable states is strictly
larger in dense time than in discrete time (with granularity 1

k
).

Consequence

Finding a correct granularity may be as difficult as computing the set of reachable
states in dense-time

Furthermore
there exist systems for which no discrete execution is possible, whatever the granu-
larity choice.

(see later)

13/46

Adding time intervals on transitions (1)

Example 1: Time Petri Nets [Merlin 1974]

• •

•

p1

p2

p3

t1, [1,+∞[

t2, [1, 1]

t3, [0,∞[

Markings: M0 = (2, 1, 0), M1 = (1, 1, 1), M2 = (0, 1, 2), M3 = (0, 0, 2)
Time valuation of a transition t: time since t was last enabled, ⊥ if t is not enabled.

An execution:
(M0, [0,0, ⊥])

1
−→ (M0, [1,1, ⊥])

t1
−→ (M1, [1,1,0])

t1
−→ (M2, [⊥,1,0])

t2
−→

(M3, [⊥, ⊥,0])
1.5
−−→(M3, [⊥, ⊥,1.5]) · · ·

13/46

Adding time intervals on transitions (1)

Example 1: Time Petri Nets [Merlin 1974]

• •

•

p1

p2

p3

t1, [1,+∞[

t2, [1, 1]

t3, [0,∞[

Markings: M0 = (2, 1, 0), M1 = (1, 1, 1), M2 = (0, 1, 2), M3 = (0, 0, 2)
Time valuation of a transition t: time since t was last enabled, ⊥ if t is not enabled.

An execution:
(M0, [0,0, ⊥])

1
−→ (M0, [1,1, ⊥])

t1
−→ (M1, [1,1,0])

t1
−→ (M2, [⊥,1,0])

t2
−→

(M3, [⊥, ⊥,0])
1.5
−−→(M3, [⊥, ⊥,1.5]) · · ·

13/46

Adding time intervals on transitions (1)

Example 1: Time Petri Nets [Merlin 1974]

• •

•

p1

p2

p3

t1, [1,+∞[

t2, [1, 1]

t3, [0,∞[

Markings: M0 = (2, 1, 0), M1 = (1, 1, 1), M2 = (0, 1, 2), M3 = (0, 0, 2)
Time valuation of a transition t: time since t was last enabled, ⊥ if t is not enabled.

An execution:
(M0, [0,0, ⊥])

1
−→ (M0, [1,1, ⊥])

t1
−→ (M1, [1,1,0])

t1
−→ (M2, [⊥,1,0])

t2
−→

(M3, [⊥, ⊥,0])
1.5
−−→(M3, [⊥, ⊥,1.5]) · · ·

14/46

Adding time intervals on transitions (2)

Example 2: finite automata with delays [Emerson et al. 1992]

ok fault

alarm

[3, 3]

[4,+∞[

[0, 2]

[0, 5]

[0,+∞[

An execution: ok
15
−→ fault

1.5
−−→ ok

8
−→ fault

3
−→ q2

2.7
−−→ ok · · ·

Remark: only delay transitions

14/46

Adding time intervals on transitions (2)

Example 2: finite automata with delays [Emerson et al. 1992]

ok fault

alarm

[3, 3]

[4,+∞[

[0, 2]

[0, 5]

[0,+∞[

An execution: ok
15
−→ fault

1.5
−−→ ok

8
−→ fault

3
−→ q2

2.7
−−→ ok · · ·

Remark: only delay transitions

15/46

Adding clocks: timed automata (1)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

x real valued clock

x < 3, x = 3, x ≥ 4 guards

x ≤ 3 invariant

{x} reset operation for x

also written x := 0

15/46

Adding clocks: timed automata (1)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

x real valued clock

x < 3, x = 3, x ≥ 4 guards

x ≤ 3 invariant

{x} reset operation for x

also written x := 0

Clock valuations and clock constraints
X a set of clocks, valuation v : X 7→ R≥0,
C(X) set of clock constraints: conjunctions of atomic constraints of the form x ./ c,
for clock x, constant c and ./ in {<,≤,=,≥, >}.

15/46

Adding clocks: timed automata (1)
A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

x real valued clock

x < 3, x = 3, x ≥ 4 guards

x ≤ 3 invariant

{x} reset operation for x

also written x := 0

Timed automaton A = (Q, q0, Inv,∆)

I Q set of (control) states, q0 initial state,

I Inv associates an invariant with each state

I ∆ contains transitions :
q q′

g, a, r

guard action reset

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

Configurations: (q, v)

v value of x satisfying

the invariant

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

Configurations: (q, v)

v value of x satisfying

the invariant

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

Configurations: (q, v)

v value of x satisfying

the invariant

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

Configurations: (q, v)

v value of x satisfying

the invariant

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

Configurations: (q, v)

v value of x satisfying

the invariant

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

Configurations: (q, v)

v value of x satisfying

the invariant

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

16/46

Adding clocks : timed automata (2)

A variation of [Alur Dill 1990]

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

Configurations: (q, v)

v value of x satisfying

the invariant

An execution: (ok, [0])
8.3
−−→ (ok, [8.3])

p
−→ (fault, [0])

3
−→ (fault, [3])

e
−→ (alarm, [3])

2.1
−−→ (alarm, [5.1])

r
−→ (ok, [0]) · · ·

Timed observation: (p, 8.3)(e, 11.3)(r, 13.4) . . .

17/46

Semantics of timed automata (1)

Operations on valuations

X set of clocks. For valuation v :

I for a subset r of X, valuation v[r 7→ 0] is obtained by reset of the clocks in r,
other values unchanged,

I for a duration d, valuation v + d is obtained by adding d to all clock values.

17/46

Semantics of timed automata (1)

Operations on valuations

X set of clocks. For valuation v :

I for a subset r of X, valuation v[r 7→ 0] is obtained by reset of the clocks in r,
other values unchanged,

I for a duration d, valuation v + d is obtained by adding d to all clock values.

Geometric view with two clocks x et y

x

y

17/46

Semantics of timed automata (1)

Operations on valuations

X set of clocks. For valuation v :

I for a subset r of X, valuation v[r 7→ 0] is obtained by reset of the clocks in r,
other values unchanged,

I for a duration d, valuation v + d is obtained by adding d to all clock values.

Geometric view with two clocks x et y

x

y

[

0
0

]

1.2
−−→

[

1.2
1.2

]

17/46

Semantics of timed automata (1)

Operations on valuations

X set of clocks. For valuation v :

I for a subset r of X, valuation v[r 7→ 0] is obtained by reset of the clocks in r,
other values unchanged,

I for a duration d, valuation v + d is obtained by adding d to all clock values.

Geometric view with two clocks x et y

x

y

[

0
0

]

1.2
−−→

[

1.2
1.2

]

x:=0
−−−→

[

0
1.2

]

17/46

Semantics of timed automata (1)

Operations on valuations

X set of clocks. For valuation v :

I for a subset r of X, valuation v[r 7→ 0] is obtained by reset of the clocks in r,
other values unchanged,

I for a duration d, valuation v + d is obtained by adding d to all clock values.

Geometric view with two clocks x et y

x

y

[

0
0

]

1.2
−−→

[

1.2
1.2

]

x:=0
−−−→

[

0
1.2

]

2
−→

[

2
3.2

]

17/46

Semantics of timed automata (1)

Operations on valuations

X set of clocks. For valuation v :

I for a subset r of X, valuation v[r 7→ 0] is obtained by reset of the clocks in r,
other values unchanged,

I for a duration d, valuation v + d is obtained by adding d to all clock values.

Geometric view with two clocks x et y

x

y

[

0
0

]

1.2
−−→

[

1.2
1.2

]

x:=0
−−−→

[

0
1.2

]

2
−→

[

2
3.2

]

y:=0

−−−→

[

2
0

]

18/46

Semantics of timed automata (2)

Definition

For a timed automaton A = (Q, q0, Inv,∆), the transition system is T = (S, s0, E)
with:

I the set of configurations S = {(q, v) ∈ Q× R≥0 | v |= Inv(q)},

I initial configuration s0 = (q0,0),

I action transitions: (q, v)
a
−→ (q′, v′), if there exists a transition q

g,a,r
−−−→ q′

from A such that v |= g and v′ |= Inv(q′), with v′ = v[r 7→ 0],

I delay transitions (q, v)
d
−→ (q, v + d) if v + d |= Inv(q).

18/46

Semantics of timed automata (2)

Definition

For a timed automaton A = (Q, q0, Inv,∆), the transition system is T = (S, s0, E)
with:

I the set of configurations S = {(q, v) ∈ Q× R≥0 | v |= Inv(q)},

I initial configuration s0 = (q0,0),

I action transitions: (q, v)
a
−→ (q′, v′), if there exists a transition q

g,a,r
−−−→ q′

from A such that v |= g and v′ |= Inv(q′), with v′ = v[r 7→ 0],

I delay transitions (q, v)
d
−→ (q, v + d) if v + d |= Inv(q).

19/46

Discrete vs dense time (revisited)

[Alur Dill 1994]

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

I Dense-time
The infinite observation (a, 1)(b, 2)(a, 2)(b, 2.9)(a, 3)(3.8)(a, 4)(b, 4.7) . . .
is in Ldense

I Discrete-time
Ldisc = ∅ no infinite observation whatever the granularity choice

19/46

Discrete vs dense time (revisited)

[Alur Dill 1994]

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

I Dense-time
The infinite observation (a, 1)(b, 2)(a, 2)(b, 2.9)(a, 3)(3.8)(a, 4)(b, 4.7) . . .
is in Ldense

I Discrete-time
Ldisc = ∅ no infinite observation whatever the granularity choice

19/46

Discrete vs dense time (revisited)

[Alur Dill 1994]

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

I Dense-time
The infinite observation (a, 1)(b, 2)(a, 2)(b, 2.9)(a, 3)(3.8)(a, 4)(b, 4.7) . . .
is in Ldense

I Discrete-time
Ldisc = ∅ no infinite observation whatever the granularity choice

20/46

The gas burner (revisited)

as a timed automaton
I each time a leakage is detected, it is repaired or stopped in less than 1s

I two leakages are separated by at least 30s

Leaking
x ≤ 1

Not leaking

x ≤ 1, stop, x := 0

x ≥ 30, start, x := 0

Not expressive enough for the property: Is it possible that the gas burner leaks
during a time greater than 1

20
of the global time after the first 60s?

20/46

The gas burner (revisited)

as a timed automaton
I each time a leakage is detected, it is repaired or stopped in less than 1s

I two leakages are separated by at least 30s

Leaking
x ≤ 1

Not leaking

x ≤ 1, stop, x := 0

x ≥ 30, start, x := 0

Not expressive enough for the property: Is it possible that the gas burner leaks
during a time greater than 1

20
of the global time after the first 60s?

21/46

Timed logics
Temporal logics

A request is always granted

in Computational Tree Logic CTL

AG(request ⇒ AF grant)

How to express:

A request is always granted in less than 5 time units

CTL + time: TCTL [Alur Henzinger 1991]

ϕ, ψ ::= P | ¬ϕ | ϕ ∧ ψ | EϕU./cψ | AϕU./cψ

P an atomic proposition, c a constant and ./ an operator in {<,>,≤,≥,=}.

In TCTL

AG(request ⇒ AF≤5 grant)

21/46

Timed logics
Temporal logics

A request is always granted

in Computational Tree Logic CTL

AG(request ⇒ AF grant)

How to express:

A request is always granted in less than 5 time units

CTL + time: TCTL [Alur Henzinger 1991]

ϕ, ψ ::= P | ¬ϕ | ϕ ∧ ψ | EϕU./cψ | AϕU./cψ

P an atomic proposition, c a constant and ./ an operator in {<,>,≤,≥,=}.

In TCTL

AG(request ⇒ AF≤5 grant)

21/46

Timed logics
Temporal logics

A request is always granted

in Computational Tree Logic CTL

AG(request ⇒ AF grant)

How to express:

A request is always granted in less than 5 time units

CTL + time: TCTL [Alur Henzinger 1991]

ϕ, ψ ::= P | ¬ϕ | ϕ ∧ ψ | EϕU./cψ | AϕU./cψ

P an atomic proposition, c a constant and ./ an operator in {<,>,≤,≥,=}.

In TCTL

AG(request ⇒ AF≤5 grant)

21/46

Timed logics
Temporal logics

A request is always granted

in Computational Tree Logic CTL

AG(request ⇒ AF grant)

How to express:

A request is always granted in less than 5 time units

CTL + time: TCTL [Alur Henzinger 1991]

ϕ, ψ ::= P | ¬ϕ | ϕ ∧ ψ | EϕU./cψ | AϕU./cψ

P an atomic proposition, c a constant and ./ an operator in {<,>,≤,≥,=}.

In TCTL

AG(request ⇒ AF≤5 grant)

21/46

Timed logics
Temporal logics

A request is always granted

in Computational Tree Logic CTL

AG(request ⇒ AF grant)

How to express:

A request is always granted in less than 5 time units

CTL + time: TCTL [Alur Henzinger 1991]

ϕ, ψ ::= P | ¬ϕ | ϕ ∧ ψ | EϕU./cψ | AϕU./cψ

P an atomic proposition, c a constant and ./ an operator in {<,>,≤,≥,=}.

In TCTL

AG(request ⇒ AF≤5 grant)

22/46

Interpretation

A formula is interpreted on a configuration of a TTS

s

...
Delay = 2

22/46

Interpretation

A formula is interpreted on a configuration of a TTS

s

...
Delay = 2

ϕ

ψ

s

s |= EϕU≤2ψ

22/46

Interpretation

A formula is interpreted on a configuration of a TTS

s

...
Delay = 2

ϕ

ψ

s

s |= AϕU≤2ψ

22/46

Interpretation

A formula is interpreted on a configuration of a TTS

s

...
Delay = 2

ϕ

ψ

s

s |= AϕU≤2ψ

Abbreviations
AF./cψ means A true U./cψ

EF./cψ means E true U./cψ

AG./cψ means ¬EF./c(¬ϕ)

23/46

Example for a timed automaton

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

initial state ok satisfies:
AG(fault ⇒ AF≤8 ok)

23/46

Example for a timed automaton

ok
fault
x ≤ 3

alarm

x = 3, e

x ≥ 4, p, {x}

x < 3, r, {x}

x ≤ 8, r, {x}

m

initial state ok satisfies:
AG(fault ⇒ AF≤8 ok)

24/46

Other logics

Back again to the gas burner

as a linear hybrid automaton

Leaking
x ≤ 1
ẏ = 1

Not leaking
ẏ = 0

x ≤ 1, stop, x := 0

x ≥ 30, start, x := 0

Add a stopwatch y and a clock z which are never reset

and use these variables in a CTL formula:

AG(z ≥ 60 ⇒ 20y ≤ z)

Timed logics for linear time

Extensions of Linear Temporal Logic LTL

I with intervals as subscript: MTL, with non singular intervals: MITL,

I with clocks in formulas...

24/46

Other logics

Back again to the gas burner

as a linear hybrid automaton

Leaking
x ≤ 1
ẏ = 1

Not leaking
ẏ = 0

x ≤ 1, stop, x := 0

x ≥ 30, start, x := 0

Add a stopwatch y and a clock z which are never reset

and use these variables in a CTL formula:

AG(z ≥ 60 ⇒ 20y ≤ z)

Timed logics for linear time

Extensions of Linear Temporal Logic LTL

I with intervals as subscript: MTL, with non singular intervals: MITL,

I with clocks in formulas...

24/46

Other logics

Back again to the gas burner

as a linear hybrid automaton

Leaking
x ≤ 1
ẏ = 1

Not leaking
ẏ = 0

x ≤ 1, stop, x := 0

x ≥ 30, start, x := 0

Add a stopwatch y and a clock z which are never reset

and use these variables in a CTL formula:

AG(z ≥ 60 ⇒ 20y ≤ z)

Timed logics for linear time

Extensions of Linear Temporal Logic LTL

I with intervals as subscript: MTL, with non singular intervals: MITL,

I with clocks in formulas...

25/46

Outline

Timed Models

Verification

Applications

Conclusion

26/46

Reachability
Deciding reachability of a control state reduces to decide emptiness.

Theorem [Alur Dill 1990]

The emptiness problem for timed automata is PSPACE-complete.

Decision procedure

Input: a timed automaton A = (Q, q0, Inv,∆) on a set X of real valued clocks

I Construction of a (Büchi) standard automaton H, such that:
no execution possible in A ⇔ no execution possible in H

I Emptiness test for H.

26/46

Reachability
Deciding reachability of a control state reduces to decide emptiness.

Theorem [Alur Dill 1990]

The emptiness problem for timed automata is PSPACE-complete.

Decision procedure

Input: a timed automaton A = (Q, q0, Inv,∆) on a set X of real valued clocks

I Construction of a (Büchi) standard automaton H, such that:
no execution possible in A ⇔ no execution possible in H

I Emptiness test for H.

26/46

Reachability
Deciding reachability of a control state reduces to decide emptiness.

Theorem [Alur Dill 1990]

The emptiness problem for timed automata is PSPACE-complete.

Decision procedure

Input: a timed automaton A = (Q, q0, Inv,∆) on a set X of real valued clocks

I Construction of a (Büchi) standard automaton H, such that:
no execution possible in A ⇔ no execution possible in H

I Emptiness test for H.

T = (S, s0, E)

transition system of A

configurations: (q, v)

q ∈ Q, v ∈ R
X
≥0

quotient
−−−−−→

H

region automaton of A

states: (q, [v])

q ∈ Q, [v] equivalence class

for some relation ∼ on R
X
≥0

27/46

Quotient construction (1)

with the following properties:

For two equivalent valuations v ∼ v′

1. if an action transition q
g,a,r
−−−→ q′ is possible from v, then the same transition is

possible from v′ and the resulting valuations v[r 7→ 0] et v′[r 7→ 0] are
equivalent,

2. if a delay transition of d is possible from v, then a delay transition of d′ is
possible from v′ and the resulting valuations v + d et v′ + d′ are equivalent.

Remarks
I Relation ∼ produces a time-abstract bisimulation between configurations

(q, v) of T and states (q, [v]) of H.

I For the first condition, it is enough to consider constraints x ./ k, for clocks in
X et constants 0 ≤ k ≤ m, where m is the maximal constant in the
constraints of A.

27/46

Quotient construction (1)

with the following properties:

For two equivalent valuations v ∼ v′

1. if an action transition q
g,a,r
−−−→ q′ is possible from v, then the same transition is

possible from v′ and the resulting valuations v[r 7→ 0] et v′[r 7→ 0] are
equivalent,

2. if a delay transition of d is possible from v, then a delay transition of d′ is
possible from v′ and the resulting valuations v + d et v′ + d′ are equivalent.

Remarks
I Relation ∼ produces a time-abstract bisimulation between configurations

(q, v) of T and states (q, [v]) of H.

I For the first condition, it is enough to consider constraints x ./ k, for clocks in
X et constants 0 ≤ k ≤ m, where m is the maximal constant in the
constraints of A.

27/46

Quotient construction (1)

with the following properties:

For two equivalent valuations v ∼ v′

1. if an action transition q
g,a,r
−−−→ q′ is possible from v, then the same transition is

possible from v′ and the resulting valuations v[r 7→ 0] et v′[r 7→ 0] are
equivalent,

2. if a delay transition of d is possible from v, then a delay transition of d′ is
possible from v′ and the resulting valuations v + d et v′ + d′ are equivalent.

Remarks
I Relation ∼ produces a time-abstract bisimulation between configurations

(q, v) of T and states (q, [v]) of H.

I For the first condition, it is enough to consider constraints x ./ k, for clocks in
X et constants 0 ≤ k ≤ m, where m is the maximal constant in the
constraints of A.

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

•
•

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

•
•

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

•
•

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

28/46

Quotient construction (2)

Geometric view with two clocks x and y, for m = 2

x

y

0

1

2

1 2

• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

Action successor of R

with y := 0

Ix =]0; 1[, Iy = [0; 0]

29/46

Quotient construction (3)

Region automaton H

For timed automaton A = (Q, q0, Inv,∆),
with set of clocks X, maximal constant m and quotient R = R

X
≥0
/∼,

I states Q×R

I (abstract) delay transitions: (q,R)
≤
−→ (q, succ(R))

I action transitions: (q,R)
a
−→ (q′, R′)

if there exists a transition q
g,a,r
−−−→ q′ from A such that R |= g and

R′ = R[r 7→ 0]

Quotient size

The size of R is O(|X|! ·m|X|), to be multiplied by | Q |.

29/46

Quotient construction (3)

Region automaton H

For timed automaton A = (Q, q0, Inv,∆),
with set of clocks X, maximal constant m and quotient R = R

X
≥0
/∼,

I states Q×R

I (abstract) delay transitions: (q,R)
≤
−→ (q, succ(R))

I action transitions: (q,R)
a
−→ (q′, R′)

if there exists a transition q
g,a,r
−−−→ q′ from A such that R |= g and

R′ = R[r 7→ 0]

Quotient size

The size of R is O(|X|! ·m|X|), to be multiplied by | Q |.

30/46

Example [Alur Dill 1990]

0 1 x

y

1

31/46

Other results

Complexity is higher than for untimed models
I The model-checking problem for TCTL on timed automata is

PSPACE-complete [Alur et al. 1993] .

I The model-checking problem for MITL on timed automata is
EXPSPACE-complete [Alur et al. 1996].

and sometimes worse:
The model-checking problem for MTL on timed automata is undecidable [Henzinger

1991].

Some efficient algorithms

by restriction: for the logic TCTL≤,≥ (without equality)

I for automata with duration and discrete time, model-checking is in polynomial
time (|A| · |ϕ|) [Laroussinie et al. 2002].

I for timed automata with a single clock, model-checking is P-complete
[Laroussinie et al. 2004].

31/46

Other results

Complexity is higher than for untimed models
I The model-checking problem for TCTL on timed automata is

PSPACE-complete [Alur et al. 1993] .

I The model-checking problem for MITL on timed automata is
EXPSPACE-complete [Alur et al. 1996].

and sometimes worse:
The model-checking problem for MTL on timed automata is undecidable [Henzinger

1991].

Some efficient algorithms

by restriction: for the logic TCTL≤,≥ (without equality)

I for automata with duration and discrete time, model-checking is in polynomial
time (|A| · |ϕ|) [Laroussinie et al. 2002].

I for timed automata with a single clock, model-checking is P-complete
[Laroussinie et al. 2004].

31/46

Other results

Complexity is higher than for untimed models
I The model-checking problem for TCTL on timed automata is

PSPACE-complete [Alur et al. 1993] .

I The model-checking problem for MITL on timed automata is
EXPSPACE-complete [Alur et al. 1996].

and sometimes worse:
The model-checking problem for MTL on timed automata is undecidable [Henzinger

1991].

Some efficient algorithms

by restriction: for the logic TCTL≤,≥ (without equality)

I for automata with duration and discrete time, model-checking is in polynomial
time (|A| · |ϕ|) [Laroussinie et al. 2002].

I for timed automata with a single clock, model-checking is P-complete
[Laroussinie et al. 2004].

32/46

Verification in practice
Several tools
have been developed and applied to case studies, in spite of the complexity:

I Kronos and UppAal for timed automata

I HCMC and HyTech for linear hybrid automata (semi-algorithms)

I TSMV for automata with duration (discrete time)

I Romeo and TINA, for time Petri nets

I ...

using specific data structures
I for the representation of regions or zones: DBM (Difference Bounded

Matrices) and variations (CDD, NDD, etc.)

I for the representation of polyedras

and heuristics for the algorithms
I on the fly analysis

I compositional methods

I constraint solving

32/46

Verification in practice
Several tools
have been developed and applied to case studies, in spite of the complexity:

I Kronos and UppAal for timed automata

I HCMC and HyTech for linear hybrid automata (semi-algorithms)

I TSMV for automata with duration (discrete time)

I Romeo and TINA, for time Petri nets

I ...

using specific data structures
I for the representation of regions or zones: DBM (Difference Bounded

Matrices) and variations (CDD, NDD, etc.)

I for the representation of polyedras

and heuristics for the algorithms
I on the fly analysis

I compositional methods

I constraint solving

32/46

Verification in practice
Several tools
have been developed and applied to case studies, in spite of the complexity:

I Kronos and UppAal for timed automata

I HCMC and HyTech for linear hybrid automata (semi-algorithms)

I TSMV for automata with duration (discrete time)

I Romeo and TINA, for time Petri nets

I ...

using specific data structures
I for the representation of regions or zones: DBM (Difference Bounded

Matrices) and variations (CDD, NDD, etc.)

I for the representation of polyedras

and heuristics for the algorithms
I on the fly analysis

I compositional methods

I constraint solving

33/46

Outline

Timed Models

Verification

Applications

Conclusion

34/46

Many experiments

in the areas of
I communication protocols

I programmable logic controllers (PLCs)

I etc.

Example: Mecatronic Standard System (MSS) platform from Bosch Group
[BBGRS05], joint work with LURPA, ENS Cachan

34/46

Many experiments

in the areas of
I communication protocols

I programmable logic controllers (PLCs)

I etc.

Example: Mecatronic Standard System (MSS) platform from Bosch Group
[BBGRS05], joint work with LURPA, ENS Cachan

34/46

Many experiments
in the areas of

I communication protocols

I programmable logic controllers (PLCs)

I etc.

Example: Mecatronic Standard System (MSS) platform from Bosch Group
[BBGRS05], joint work with LURPA, ENS Cachan

35/46

Presentation of MSS station 2

I Work-pieces are transported by a linear conveyor

I They are tested by a jack for the presence or absence of a bearing (inside)

I and by sensors to determine their material

The system is controlled by a program, in two versions: with an event-driven task,
triggered when the testing position is reached, or without it.

Requirement

The conveyor arrives at the bearing test position with a high speed (200 mm/s) and
it must react to the stopping order in less than 5ms.

P: the conveyor stops in less than 5 ms at the bearing test position.

35/46

Presentation of MSS station 2

I Work-pieces are transported by a linear conveyor

I They are tested by a jack for the presence or absence of a bearing (inside)

I and by sensors to determine their material

The system is controlled by a program, in two versions: with an event-driven task,
triggered when the testing position is reached, or without it.

Requirement

The conveyor arrives at the bearing test position with a high speed (200 mm/s) and
it must react to the stopping order in less than 5ms.

P: the conveyor stops in less than 5 ms at the bearing test position.

36/46

Modeling MSS station 2 (1)
with Uppaal

as a network of timed automata, handling clocks and discrete variables and commu-
nicating through binary and broadcast channels.
The conveyor:

36/46

Modeling MSS station 2 (1)
with Uppaal

as a network of timed automata, handling clocks and discrete variables and commu-
nicating through binary and broadcast channels.
The conveyor:

left

moveR1

x_c <= 500

moveR2

x_c <= 500

moveR3

x_c <= 500

moveR4

x_c <= 500

moveR5

x_c <=1000

moveL1

x_c <= 500

moveL2

x_c <=500

moveL3

x_c <=500

moveL4

x_c <=500

moveL5

x_c <=1000

capacitive-sensor test optical-sensor inductive-sensor right

go-right?
x_c:=0,
left-pos:=0

x_c >=490

capaci!
go-right?

x_c:=0

x_c >= 490

postest!
x_c:=0

go-right?

x_c:=0,
pos_test:=0

x_c >= 490

optics!

go-right?

x_c :=0
induc!

x_c>=490
go-right?

x_c:=0

x_c >= 980

posright!

right-pos:= 1

go-left?

x_c:=0,
right-pos:=0

x_c ==1000
induc!

go_left?

x_c:=0

x_c==500
optics!

go-left?

x_c:=0

x_c==500
postest!
pos_test:=1

go-left?

x_c:=0,
pos_test:=0

x_c==500
capaci!

go-left!

x_c:=0

x_c==500

left-pos:=1

stop?

go-left?

stop? stop? stop?
stop? stop? go-right?

go-right? go-right? go-right? go-right? go-right?

go-left? go-left? go-left?
go-left?

go-left?

37/46

Modeling station 2 of the platform (2)

other elements

An optical sensor, the jack and the environment (abstracted):

idle

x_co <= 400

ob==1||ob==2||ob==3||ob==4

optical:=1,
x_co:=0

optics?

x_co == 400
optical:= 0

ob==0 || ob==5 || ob==6
optics?
x_co:=0

top go_down limiting_position

down_jack?

up_jack?
up_jack?

jack_down:= 0

ob==1 || ob==5 || ob == 3,
pos_test==1

down_jack?up_jack? down_jack?

ob==0 ||ob==2 || ob == 4 || ob == 6||
((ob==1 || ob==3 || ob==5) && pos_test ==0)

down_jack?

jack_down:=1 wait_loading
pinion_loaded

left_pos== 1

DCY :=1,
ob:=1,
evac_pinion:=0

DCY:= 0,
evac_pinion:=1,
ob:=0

right_pos == 1

left_pos== 1

DCY := 1,
ob:=4,
evac_pinion:=0

left_pos==1

DCY := 1,
ob:= 3,
evac_pinion:=0

left_pos== 1

DCY :=1,
ob:= 2,
evac_pinion:=0

left_pos== 1

DCY:=1,
ob:=5,
evac_pinion:=0

left_pos== 1

DCY:=1,
ob:=6,
evac_pinion:=0

left_pos==1
ob:=0

38/46

Modeling the control program (1)

written in Ladder Diagram (IEC 61131-3)

| a b ST |

+---| |---| |---()---+

| c MA |

+---|/|---+-----()---+

| d | |

+---| |---+ |

| |

means
ST := a and b

MA := not(c) or d

39/46

Modeling the control program (2)

in Uppaal

idle

input_reading
x_cycle<=10

output_emission
x_cycle <= 10

computing
x_cycle<=10

x0 :=1, x1:= 0,x2:= 0,
x3:= 0,x4:= 0,x5:= 0,
x6:= 0,x7:= 0,x8:= 0,
x9:= 0,x10:= 0,x11:= 0,
x_cycle:=0

motor == 1 && right == 1

go_right !

motor==1 && right == 0

go_left!

motor==0

stop!

up_jack==1

upjack!

down_jack==1

downjack!

motor == 0 || right == 0motor==0 || right == 1motor==1up_jack== 0

down_jack==0

x_cycle:= 0

x_cycle >=5

x0 := CFT18||(x0 && ! CFT0),
x1:= CFT0 ||(x1 && !CFT1 && !CFT2),
x2:= CFT1 || (x2 && ! CFT3),
x3:= CFT2||(x3 && ! CFT4),
x4:= (CFT3||CFT4)||(x4 && ! CFT5 && ! CFT6),
x5:= CFT5 ||(x5 && !CFT7),
x6:= CFT6 || (x6 && !CFT8),
x7:= (CFT7||CFT8)||(x7 && !CFT9 && !CFT10 && !CFT11),
x8:= CFT9 || (x8 && !CFT12),
x9 := CFT10 || (x9 && ! CFT13 && ! CFT14),
x10:= CFT13 ||(x10 && ! CFT15),
x11 := CFT14 || CFT11 ||(x11 && ! CFT16),
x12 := (CFT12 ||CFT15 ||CFT16)||(x12 && ! CFT17),
x13:= CFT17 ||(x13 && ! CFT18)

CFT0 := x0 && DCY,
CFT1:= x1 && capacitive,
Ton_in35 := x1,
CFT3 := x2 && evt1_activ,
CFT4:= x3 && evt1_activ,
Ton_in33:= x4,
CFT6:= x4 && jack_down,
Ton_in38 := x5,
Ton_in37 := !jack_down,
Ton_in34 := x7,
CFT10:= x7 && optical,
CFT11:= x7&& inductive,
CFT12:= x8 && right_pos,
Ton_in36 := x9,
CFT14 := x9 && inductive,
CFT15 := x10 && right_pos,
CFT16:=x11 && right_pos,
CFT17:= x12 && evac_pinion,
CFT18 := x13 && left_pos

TON!

CFT2 := Ton_Q35,
CFT5 := Ton_Q33,
CFT7:= x5 && Ton_Q38,
CFT8 := x6 && Ton_Q37,
CFT9:= Ton_Q34,
CFT13:= Ton_Q36

motor:=(x0==1 || x12==1 ? 0 : motor),
motor:=(x1==1 || x7 ==1 || x13 ==1 ? 1 : motor),
right:=(x1==1 ? 1 : right),
right:=(x13==1 ? 0 : right),
down_jack:=x4,
up_jack:= x6 || x5,
present_pinion:=(x2==1 ? 1 : present_pinion),
present_pinion:=(x3==1 ? 0 : present_pinion),
pvc_pinion :=(x8==1 ? 1 :pvc_pinion),
pvc_pinion :=(x10==1 || x11==1 ? 0 : pvc_pinion),
cooper_pinion := (x10==1 ? 1 : cooper_pinion),
cooper_pinion := (x8==1 || x11==1 ? 0 : cooper_pinion),
steel_pinion := (x11==1 ? 1 :steel_pinion),
steel_pinion := (x8==1 || x10==1 ? 0 : steel_pinion),
evt1_activ := (x4==1 ? 0 : evt1_activ),
present_bearing := (x5 ? 1 : present_bearing),
present_bearing := (x6 ? 0 : present_bearing)

40/46

Time in PLCs

Timer On Delay (TON)

0

ET

PT

Q

IN

40/46

Time in PLCs

Timer On Delay (TON)

0

ET

PT

Q

IN

IN = 1,
Q:=0, x:= 0,
TON?

IN = 0, TON?

x=PT,
IN=1,
Q:=1

IN = 0,
Q:=0,
TON?

41/46

Results

Verification uses an observer automaton with clock X, reset when the signal is sent
and tested when the conveyor stops.

property result time memory

with the event driven task
C1:E<> obs.stop and X > 5 yes 15 s 30 Mb
C2:E<> obs.stop and X ≤ 5 yes 15 s 30 Mb
C3:E<> obs.stop and X > 10 no 22 s 61 Mb

without the event driven task
C5:E<> obs.stop and X ≥ 10 yes 16 s 30 Mb
C6:E<> obs.stop and X > 20 no 22 s 70 Mb
C7:E<> obs.stop and X < 10 no 22 s 69 Mb

with Mader-Wupper model
C8:E<> obs.stop and X > 5 - >29 h -

Linux machine, pentium4 at 2.4 GHz with 3 Gb RAM

I Multitask programming reduces the reaction time from two to one cycle time.

I However, C1 proves that it is not sufficient to satisfy requirement P.

Performances (14 automata, 11 clocks, 30.106 states) are due to an atomicity hy-
pothesis in the control program and enhanced model of the TON block.

42/46

Outline

Timed Models

Verification

Applications

Conclusion

43/46

Conclusion

Many works in this area
I for other models and other logics

I for quantitative extensions with weights, costs, probabilities, etc.

I relating control problems with game theory

Perspectives

Theoretical: refine the limits for decidability questions
Practical : deal with the combinatorial explosion problem

I specifications and models fitting particular settings, with simpler and more
efficient algorithms

I data structures for the combination of discrete and continuous features

I abstraction methods

43/46

Conclusion

Many works in this area
I for other models and other logics

I for quantitative extensions with weights, costs, probabilities, etc.

I relating control problems with game theory

Perspectives

Theoretical: refine the limits for decidability questions
Practical : deal with the combinatorial explosion problem

I specifications and models fitting particular settings, with simpler and more
efficient algorithms

I data structures for the combination of discrete and continuous features

I abstraction methods

44/46

Thank you

45/46

Bibliography

[ACHH93] Alur, Courcoubetis, Henzinger, Ho. Hybrid Automata: an Algorithmic Approach
to Specification and Verification of Hybrid Systems. Hybrid Systems I (LNCS 736).

[Alur91] Alur. Techniques for Automatic Verification of Real-Time Systems. PhD Thesis,
1991.

[BS91] Brzozowski, Seger. Advances in Asynchronous Circuit Theory. BEATCS, 1991.

[Merlin74] Merlin. A Study of the Recoverability of Computing Systems. PhD Thesis,
1974.

[EMSS92] Emerson, Mok, Sistla, Srinivasan. Quantitative Temporal Reasoning. Real-Time
Systems 4(4), 1992.

[AD90] Automata for Modeling Real-Time Systems. ICALP’90 (LNCS 443).

[AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.

[AH91] Alur, Henzinger. Logics and models of real time: a survey. Real-time: Theory in
practice (LNCS 600).

[ACD93] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time. Information and
Computation 104(1), 1993.

[AFH96] Alur, Feder, Henzinger. The Benefits of Relaxing Punctuality. JACM 43(1), 1996.

[Henzinger91] Henzinger. The temporal specification and verification of real-time
systems. PhD Thesis, 1991.

[LMP06] Laroussinie, Markey, Schnoebelen. Efficient timed model checking for discrete
time systems. TCS 353(1-3), 2006.

46/46

[LMP04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or
two clocks. CONCUR’04 (LNCS 3170).

[BBGRS05] Bel mokadem, Bérard, Gourcuff, Roussel, de Smet. Verification of a timed
multitask system with Uppaal. ETFA’05, IEEE, 2005.

	Introduction
	Outline
	Timed Models
	Verification
	Applications
	Conclusion

