Channel Synthesis Revisited

<u>Béatrice Bérard</u>¹ Olivier Carton²

¹Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606 ²Université Paris-Diderot, LIAFA, CNRS UMR 7089

Work partially supported by projects ANR FREC and Coopération France-Québec - 2012/26/SCAC

8th International Conference on Languages and Automata Theory and Applications March 10th, 2014

◆□▶◆□▶◆≧▶◆≧▶ ≧ の�? 1/16

Distributed synthesis

Distributed synthesis

Problems

- Decide the existence of a distributed program such that the joint behavior P₁||P₂||P₃||P₄||E satisfies φ, for all E.
- Synthesis: If it exists, compute such a distributed program.

 \rightsquigarrow Undecidable for asynchronous communication with two processes and total LTL specifications [Schewe, Finkbeiner; 2006].

Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages: output message = input message (perfect data transmission)

Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages: output message = input message (perfect data transmission)
- All processes are finite transducers

Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages: output message = input message (perfect data transmission)
- All processes are finite transducers

Finite transducers

A transducer is a finite automaton with set of labels $Lab \subseteq A^* \times B^*$, it accepts a rational relation R,

- $dom(R) = \{u \in A^* \mid (u, v) \in R \text{ for some } v \in B^*\},\$
- range(R) = { $v \in B^* \mid (u, v) \in R$ for some $u \in A^*$ }.

A relation R realized by a transducer, as a union of two functions: $R={\it f}_1+{\it f}_2$

 $R(00) = \{0101, 0\}$ and $R(01) = \{011, 0\}$. range $(f_1) = (01+1)^*$ and range $(f_2) = (0+1)^*$.

Rational channels

- The identity relation on A^* is $Id_{A^*} = \{(w, w) | w \in A^*\}$.
- ▶ Rational relations can be composed: RR'.

Definition

A channel for a rational relation R is a pair (E, D) of rational relations such that $ERD = Id_{\{0,1\}^*}$

Problems:

Given R, does there exist a channel (E, D) for R? If it exists, can it be computed?

Rational channels

- The identity relation on A^* is $Id_{A^*} = \{(w, w) | w \in A^*\}$.
- ▶ Rational relations can be composed: RR'.

Definition

A channel for a rational relation R is a pair (E, D) of rational relations such that $ERD = Id_{\{0,1\}^*}$

Problems:

Given R, does there exist a channel (E, D) for R? If it exists, can it be computed?

Previous results [BBLMRS 2011]

- The channel synthesis problem is undecidable.
- ▶ When *R* is a function, the problem is decidable and if it exists, the channel can be computed in polynomial time.

Outline

Growth of languages

Patterns

Conclusion

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 6/16

Growth of languages

Definition

For a language *L* over alphabet *A*, the growth of *L* is δ_L : $\delta_L(n) = card(L \cap A^{\leq n})$

L has polynomial growth if $\delta_L(n)$ is bounded by some polynomial finite unions of languages of the form $u_1v_1^* \dots u_kv_k^*u_{k+1}$

L has exponential growth if $\delta_L(n)$ is greater than some exponential languages containing some $u(v + \overline{v})^* w$ (where $\{v, \overline{v}\}$ is a code)

Growth of languages

Definition

For a language *L* over alphabet *A*, the growth of *L* is δ_L : $\delta_L(n) = card(L \cap A^{\leq n})$

L has polynomial growth if $\delta_L(n)$ is bounded by some polynomial finite unions of languages of the form $u_1v_1^* \dots u_kv_k^*u_{k+1}$

L has exponential growth if $\delta_L(n)$ is greater than some exponential languages containing some $u(v + \overline{v})^* w$ (where $\{v, \overline{v}\}$ is a code)

Rational bijections [Maurer, Nivat; 1980]

- > The growth of a rational language is either polynomial or exponential.
- There is a rational bijection between two rational languages if and only if they have the same growth:
 - both finite with same cardinality,
 - or both polynomial with same degree for the minimal polynomial,
 - or both exponential.

A characterization of channels

A relation R has a channel iff there are two rational languages L_0 and L_1 with exponential growth such that $R \cap (L_0 \times L_1)$ is a bijection between L_0 and L_1 .

A characterization of channels

A relation R has a channel iff there are two rational languages L_0 and L_1 with exponential growth such that $R \cap (L_0 \times L_1)$ is a bijection between L_0 and L_1 .

Uses the Uniformization Theorem [Schützenberger]: Any rational relation R contains a rational function with same domain.

Channels for bounded relations

A rational relation R is bounded by k iff there exist k rational functions f_1, \ldots, f_k such that $R = f_1 + \cdots + f_k$. [Weber; 1996], [Sakarovitch, de Souza; 2008].

For a bounded relation R

- $R = f_1 + \cdots + f_k$, where each f_i is a rational function:
 - R has a channel
 - iff at least one f_i has a channel
 - ▶ iff range(R) has an exponential growth

Channels for bounded relations

A rational relation R is bounded by k iff there exist k rational functions f_1, \ldots, f_k such that $R = f_1 + \cdots + f_k$. [Weber; 1996], [Sakarovitch, de Souza; 2008].

For a bounded relation R

- $R = f_1 + \cdots + f_k$, where each f_i is a rational function:
 - R has a channel
 - iff at least one f_i has a channel
 - ▶ iff range(R) has an exponential growth

Channel synthesis

For R given as $f_1 + \cdots + f_k$, where each f_i is a rational function, the existence of a channel is decidable in linear time. When it exists, the channel can be effectively computed.

Patterns

From exponential growth to patterns

Let *L* be accepted by a finite automaton A.

Then L has exponential growth if and only if A contains pathes:

$$(q_{init}) \quad u \quad q_{f} \quad w \quad q_{f} \quad w \quad with \ v \neq \overline{v} \text{ and } |v| = |\overline{v}|$$

This can be checked in linear time.

Definition

A pattern is a 4-tuple $s = (u, v, \overline{v}, w)$ such that $v \neq \overline{v}$ and $|v| = |\overline{v}|$.

- Language of $s : L_s = u(v + \overline{v})^* w$
- ▶ Subpattern of $s : s' = (ux, y, \overline{y}, zw)$, with $x, y, \overline{y}, z \in (v + \overline{v})^*$. Then $L_{s'} \subseteq L_s$.

Conjugated patterns

Definition

Patterns s and s' are conjugated if $s = (u, xv, x\overline{v}, xw)$ and $s' = (ux, vx, \overline{v}x, w)$ (or $s' = (ux, \overline{v}x, vx, w)$). Then $L_s = L_{s'}$.

Proposition

If s and s' are not conjugated, then one of them can be replaced by one of its subpatterns to make the associated languages disjoint. In particular, s and s' are conjugated iff $L_s = L_{s'}$.

From patterns to channels

For patterns $s = (u, v, \overline{v}, w)$ and $s' = (u', v', \overline{v'}, w')$, the function $h_{s,s'}$ with graph $(u, u')[(v, v') + (\overline{v}, \overline{v'})]^*(w, w')$ is a rational bijection from L_s onto $L_{s'}$.

Proof of main result and channel synthesis

- 1. If f is a rational function such that range(f) has exponential growth, then there exist patterns s and s' such that $h_{s,s'} \subseteq f$.
- 2. If R has a channel and if f is a rational function, then R + f has a channel.
- Procedure for $R = f_1 + \cdots + f_k$:
 - Find a channel for the first f_i with exponential growth, using 1.
 - Use 2. to iteratively build a channel for $f_i + f_{i+1}, \ldots, f_i + \cdots + f_k$.

Example: extraction of channel

 $R = f_1 + f_2$

• For output pattern $s_1 = (\varepsilon, 011, 101, \varepsilon)$, $L_{s_1} \subseteq (01 + 1)^*$. Corresponding input pattern: $s = (\varepsilon, 01, 10, \varepsilon)$, hence h_{s,s_1} gives a channel for f_1 .

- In f_2 , s induces output pattern $s_2 = (\varepsilon, 0, 1, \varepsilon)$, but $L_{s_1} \subseteq L_{s_2}$, so h_{s,s_1} does not produce a channel for R.
- Extract sub-pattern $s' = (\varepsilon, 0101, 1010, \varepsilon)$ from s, as input pattern for f_2 . Corresponding output pattern: $s_3 = (\varepsilon, 00, 11, \varepsilon)$ not conjugated with s_1 , and $L_{s_1} \cap L_{s_3} = \emptyset$.
- Channel (E, D) for $R = f_1 + f_2$ is built from h_{s',s_3} : E(0) = 0101, E(1) = 1010, and D(00) = 0, D(11) = 1.

Conclusion

Contribution

- ► We link the existence of a rational channel with the growth of rational languages, leading to new characterizations.
- As a consequence, we obtain a linear procedure to decide channel existence for a bounded transducer given as a sum of functions, and synthesis when the answer is positive.

Future work

- Investigate more powerful channels, with two-ways or pushdown transducers.
- Extend the characterization to relations R such that the size of R(u) is bounded by a polynomial in |u|.

Thank you

< □ > < □ > < □ > < ≧ > < ≧ > ≧ の Q つ 15/16

A small example of channel

