Channel Synthesis Revisited

Béatrice Bérard ${ }^{1}$ Olivier Carton ${ }^{2}$
${ }^{1}$ Université Pierre \& Marie Curie, LIP6/MoVe, CNRS UMR 7606
${ }^{2}$ Université Paris-Diderot, LIAFA, CNRS UMR 7089

Work partially supported by projects ANR FREC and Coopération France-Québec - 2012/26/SCAC

8th International Conference on Languages and Automata Theory and Applications March 10th, 2014

Distributed synthesis

Specification

Distributed synthesis

Problems

- Decide the existence of a distributed program such that the joint behavior $P_{1}\left\|P_{2}\right\| P_{3}\left\|P_{4}\right\| E$ satisfies φ, for all E.
- Synthesis: If it exists, compute such a distributed program.
\rightsquigarrow Undecidable for asynchronous communication with two processes and total LTL specifications [Schewe, Finkbeiner; 2006].

Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages: output message $=$ input message (perfect data transmission)

Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages: output message $=$ input message (perfect data transmission)
- All processes are finite transducers

Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages: output message $=$ input message (perfect data transmission)
- All processes are finite transducers

Finite transducers

A transducer is a finite automaton with set of labels $L a b \subseteq A^{*} \times B^{*}$, it accepts a rational relation R,

- $\operatorname{dom}(R)=\left\{u \in A^{*} \mid(u, v) \in R\right.$ for some $\left.v \in B^{*}\right\}$,
- $\operatorname{range}(R)=\left\{v \in B^{*} \mid(u, v) \in R\right.$ for some $\left.u \in A^{*}\right\}$.

A relation R realized by a transducer, as a union of two functions: $R=f_{1}+f_{2}$

$R(00)=\{0101,0\}$ and $R(01)=\{011,0\}$.
$\operatorname{range}\left(f_{1}\right)=(01+1)^{*}$ and $\operatorname{range}\left(f_{2}\right)=(0+1)^{*}$.

Rational channels

- The identity relation on A^{*} is $l d_{A^{*}}=\left\{(w, w) \mid w \in A^{*}\right\}$.
- Rational relations can be composed: $R R^{\prime}$.

Definition

A channel for a rational relation R is a pair (E, D) of rational relations such that

$$
E R D=I d_{\{0,1\}^{*}}
$$

Problems:
Given R, does there exist a channel (E, D) for R ? If it exists, can it be computed?

Rational channels

- The identity relation on A^{*} is $l d_{A^{*}}=\left\{(w, w) \mid w \in A^{*}\right\}$.
- Rational relations can be composed: $R R^{\prime}$.

Definition

A channel for a rational relation R is a pair (E, D) of rational relations such that

$$
E R D=I d_{\{0,1\}^{*}}
$$

Problems:

Given R, does there exist a channel (E, D) for R ? If it exists, can it be computed?

Previous results [BBLMRS 2011]

- The channel synthesis problem is undecidable.
- When R is a function, the problem is decidable and if it exists, the channel can be computed in polynomial time.

Outline

Growth of languages

Patterns

Conclusion

Growth of languages

Definition

For a language L over alphabet A, the growth of L is δ_{L} :

$$
\delta_{L}(n)=\operatorname{card}\left(L \cap A^{\leq n}\right)
$$

L has polynomial growth if $\delta_{L}(n)$ is bounded by some polynomial finite unions of languages of the form $u_{1} v_{1}^{*} \ldots u_{k} v_{k}^{*} u_{k+1}$
L has exponential growth if $\delta_{L}(n)$ is greater than some exponential languages containing some $u(v+\bar{v})^{*} w$ (where $\{v, \bar{v}\}$ is a code)

Growth of languages

Definition

For a language L over alphabet A, the growth of L is δ_{L} :

$$
\delta_{L}(n)=\operatorname{card}\left(L \cap A^{\leq n}\right)
$$

L has polynomial growth if $\delta_{L}(n)$ is bounded by some polynomial finite unions of languages of the form $u_{1} v_{1}^{*} \ldots u_{k} v_{k}^{*} u_{k+1}$
L has exponential growth if $\delta_{L}(n)$ is greater than some exponential languages containing some $u(v+\bar{v})^{*} w$ (where $\{v, \bar{v}\}$ is a code)

Rational bijections [Maurer, Nivat; 1980]

- The growth of a rational language is either polynomial or exponential.
- There is a rational bijection between two rational languages if and only if they have the same growth:
- both finite with same cardinality,
- or both polynomial with same degree for the minimal polynomial,
- or both exponential.

A characterization of channels

A relation R has a channel iff there are two rational languages L_{0} and L_{1} with exponential growth such that $R \cap\left(L_{0} \times L_{1}\right)$ is a bijection between L_{0} and L_{1}.

A characterization of channels

A relation R has a channel iff there are two rational languages L_{0} and L_{1} with exponential growth such that $R \cap\left(L_{0} \times L_{1}\right)$ is a bijection between L_{0} and L_{1}.

Uses the Uniformization Theorem [Schützenberger]: Any rational relation R contains a rational function with same domain.

Channels for bounded relations

A rational relation R is bounded by k iff there exist k rational functions f_{1}, \ldots, f_{k} such that $R=f_{1}+\cdots+f_{k}$. [Weber; 1996], [Sakarovitch, de Souza; 2008].

For a bounded relation R

$R=f_{1}+\cdots+f_{k}$, where each f_{i} is a rational function:

- R has a channel
- iff at least one f_{i} has a channel
- iff range (R) has an exponential growth

Channels for bounded relations

A rational relation R is bounded by k iff there exist k rational functions f_{1}, \ldots, f_{k} such that $R=f_{1}+\cdots+f_{k}$. [Weber; 1996], [Sakarovitch, de Souza; 2008].

For a bounded relation R

$R=f_{1}+\cdots+f_{k}$, where each f_{i} is a rational function:

- R has a channel
- iff at least one f_{i} has a channel
- iff range (R) has an exponential growth

Channel synthesis

For R given as $f_{1}+\cdots+f_{k}$, where each f_{i} is a rational function, the existence of a channel is decidable in linear time. When it exists, the channel can be effectively computed.

Patterns

From exponential growth to patterns

Let L be accepted by a finite automaton \mathcal{A}.
Then L has exponential growth if and only if \mathcal{A} contains pathes:

This can be checked in linear time.

Definition

A pattern is a 4-tuple $s=(u, v, \bar{v}, w)$ such that $v \neq \bar{v}$ and $|v|=|\bar{v}|$.

- Language of $s: L_{s}=u(v+\bar{v})^{*} w$
- Subpattern of $s: s^{\prime}=(u x, y, \bar{y}, z w)$, with $x, y, \bar{y}, z \in(v+\bar{v})^{*}$. Then $L_{s^{\prime}} \subseteq L_{s}$.

Conjugated patterns

Definition

Patterns s and s^{\prime} are conjugated if $s=(u, x v, x \bar{v}, x w)$ and $s^{\prime}=(u x, v x, \bar{v} x, w)$ (or $s^{\prime}=(u x, \bar{v} x, v x, w)$). Then $L_{s}=L_{s^{\prime}}$.

Proposition

If s and s^{\prime} are not conjugated, then one of them can be replaced by one of its subpatterns to make the associated languages disjoint.
In particular, s and s^{\prime} are conjugated iff $L_{s}=L_{s^{\prime}}$.

From patterns to channels

For patterns $s=(u, v, \bar{v}, w)$ and $s^{\prime}=\left(u^{\prime}, v^{\prime}, \overline{v^{\prime}}, w^{\prime}\right)$, the function $h_{s, s^{\prime}}$ with graph $\left(u, u^{\prime}\right)\left[\left(v, v^{\prime}\right)+\left(\bar{v}, \overline{v^{\prime}}\right)\right]^{*}\left(w, w^{\prime}\right)$ is a rational bijection from L_{s} onto $L_{s^{\prime}}$.

Proof of main result and channel synthesis

1. If f is a rational function such that range (f) has exponential growth, then there exist patterns s and s^{\prime} such that $h_{s, s^{\prime}} \subseteq f$.
2. If R has a channel and if f is a rational function, then $R+f$ has a channel.

Procedure for $R=f_{1}+\cdots+f_{k}$:

- Find a channel for the first f_{i} with exponential growth, using 1.
- Use 2. to iteratively build a channel for $f_{i}+f_{i+1}, \ldots, f_{i}+\cdots+f_{k}$.

Example: extraction of channel

$R=f_{1}+f_{2}$

- For output pattern $s_{1}=(\varepsilon, 011,101, \varepsilon), L_{s_{1}} \subseteq(01+1)^{*}$.

Corresponding input pattern: $s=(\varepsilon, 01,10, \varepsilon)$, hence $h_{s, s_{1}}$ gives a channel for f_{1}.

- In f_{2}, s induces output pattern $s_{2}=(\varepsilon, 0,1, \varepsilon)$, but $L_{s_{1}} \subseteq L_{s_{2}}$, so $h_{s, s_{1}}$ does not produce a channel for R.
- Extract sub-pattern $s^{\prime}=(\varepsilon, 0101,1010, \varepsilon)$ from s, as input pattern for f_{2}. Corresponding output pattern: $s_{3}=(\varepsilon, 00,11, \varepsilon)$ not conjugated with s_{1}, and $L_{s_{1}} \cap L_{s_{3}}=\emptyset$.
- Channel (E, D) for $R=f_{1}+f_{2}$ is built from $h_{s^{\prime}, s_{3}}$: $E(0)=0101, E(1)=1010$, and $D(00)=0, D(11)=1$.

Conclusion

Contribution

- We link the existence of a rational channel with the growth of rational languages, leading to new characterizations.
- As a consequence, we obtain a linear procedure to decide channel existence for a bounded transducer given as a sum of functions, and synthesis when the answer is positive.

Future work

- Investigate more powerful channels, with two-ways or pushdown transducers.
- Extend the characterization to relations R such that the size of $R(u)$ is bounded by a polynomial in $|u|$.

Thank you

A small example of channel

