Verification of Hybrid Systems

Béatrice Bérard

Sorbonne Université -LIP6

Based on joint work with: P. Bouyer, S. Haddad, V. Jugé, C. Picaronny, M. Safey El Din, M. Sassolas

GALA, December 14th, 2019

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ ○ Ξ · つへで 1/34</p>

Hybrid systems

Hybrid systems

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 2/34

Two modes:

- 1. Heater **ON**: $\dot{\Theta} = \alpha(\Theta_{target} \Theta)$
- 2. Heater **OFF**: $\dot{\Theta} = \beta(\Theta_{\text{outside}} \Theta)$

Hybrid systems

Two modes:

- 1. Heater **ON**: $\dot{\Theta} = \alpha(\Theta_{target} \Theta)$
- 2. Heater **OFF**: $\dot{\Theta} = \beta(\Theta_{\text{outside}} \Theta)$

Duality between:

- Discrete set of system modes
- Continuous system evolution

Verification

Verification problems are mostly undecidable on hybrid systems

Decidability requires restricting:

either the flows [Henzinger et al. 1998]

for instance with clocks: $\dot{x} = 1$ in all modes

or the jumps [Alur et al. 2000]

using for instance strong resets between modes

Other approaches

like

- bounded delay reachability,
- or approximations by discrete transition systems.

Outline

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ◆ ○ ◆ ◆ 4/34

Timed Automata from Alur, Dill (1990)

Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition Algorithmic issues

A result on Dynamical Systems

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x \bowtie k$, with $k \in \mathbb{N}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0

Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

A geometric view of a trajectory

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x \bowtie k$, with $k \in \mathbb{N}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0

Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x \bowtie k$, with $k \in \mathbb{N}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0

Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x \bowtie k$, with $k \in \mathbb{N}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0

Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Reachability

Semantics of \mathcal{A}

with clocks $X = \{x_1, \ldots, x_n\}$, set of modes Q, set of transitions E: a transition system T_A with

- configurations: $(q, v) \in Q imes \mathbb{R}^n_+$
- time steps: $(q, v) \xrightarrow{d} (q, v + d)$
- ▶ discrete steps: $(q, v) \xrightarrow{e} (q', v')$ for a transition $e = q \xrightarrow{g,a,r} q'$ in *E* if clock values *v* satisfy the guard *g* and v' = v[r]

An execution is a sequence alternating time and discrete steps.

Reachability problem

Given A and $q_f \in Q$ is there an execution from initial configuration $s_0 = (q_0, \mathbf{0})$ to (q_f, v) for some valuation v?

A finite quotient for timed automata

[Alur, Dill, 1990]

From \mathcal{A} , build a finite automaton $Reg(\mathcal{A})$ preserving reachability.

Equivalence \sim over \mathbb{R}^n_+ producing a partition \mathcal{R} of **regions**

The automaton Reg(A) is time-abstract bisimilar to \mathcal{T}_A :

- set of states $Q imes \mathcal{R}$,
- ▶ abstract time steps $(q, R) \rightarrow (q, succ(R))$ consistent with time elapsing in $\mathcal{T}_{\mathcal{A}}$,
- ▶ discrete steps $(q, R) \xrightarrow{e} (q', R')$ consistent with discrete transitions in \mathcal{T}_A .

A geometric view with two clocks x and y, maximal constant m = 2

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへで 8/34

A geometric view with two clocks x and y, maximal constant m = 2

• Equivalent valuations must be consistent with constraints $x \bowtie k$

A geometric view with two clocks x and y, maximal constant m = 2

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and y < x + 1

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and y < x + 1

Time successor of Rx = 1 and 1 < y < 2

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and y < x + 1

Time successor of Rx = 1 and 1 < y < 2

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and y < x + 1

Time successor of Rx = 1 and 1 < y < 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and y < x + 1

Time successor of Rx = 1 and 1 < y < 2

Discrete step from Rwith y := 00 < x < 1 and y = 0

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへで 8/34

Outline

Timed Automata from Alur, Dill (1990)

Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition Algorithmic issues

A result on Dynamical Systems

Polynomial constraints with parameters

Landing a rocket

First stage (lasting x_1) in state q_0 : From distance d, the rocket approaches the land under gravitation g;

Second stage (lasting x_2 , while x_1 is frozen) in q_1 : The rocket approaches the land with constant deceleration h < 0;

Third stage: The rocket must reach the land with small positive speed (less than ε).

Interrupt clocks

Many real-time systems include interruption mechanisms (as in processors).

Polynomial Interrupt Timed Automata

In the class POLITA

- variables are interrupt clocks with flow x
 = 0 or x
 = 1
 ordered along hierarchical levels,
- guards are polynomial constraints and variables can be updated by polynomials.

Main result: Reachability is decidable in 2EXPTIME [BHPSS 15]

clocks $X = \{x_1, \ldots, x_n\}$ with x_k active at level k, set of modes Q with $\lambda : Q \to \{1, \ldots, n\}$ the state level, Guards: conjunctions of polynomial constraints $P \bowtie 0$ with \bowtie in $\{<, \leq, =, \geq, >\}$, and $P \in \mathbb{Q}[x_1, \ldots, x_k]$ at level k.

clocks $X = \{x_1, \ldots, x_n\}$ with x_k active at level k, set of modes Q with $\lambda : Q \to \{1, \ldots, n\}$ the state level, Guards: conjunctions of polynomial constraints $P \bowtie 0$ with \bowtie in $\{<, \leq, =, \geq, >\}$, and $P \in \mathbb{Q}[x_1, \ldots, x_k]$ at level k.

$$(q, 3) \xrightarrow{2x_1^2x_2x_3^2 - \frac{1}{3}x_2x_1^3 + x_1 + 1 > 0, \ a, \ u}$$

◆□▶◆□▶◆≧▶◆≧▶ 差 のへで 14/34

clocks $X = \{x_1, \ldots, x_n\}$ with x_k active at level k, set of modes Q with $\lambda : Q \to \{1, \ldots, n\}$ the state level, Guards: conjunctions of polynomial constraints $P \bowtie 0$ with \bowtie in $\{<, \leq, =, \geq, >\}$, and $P \in \mathbb{Q}[x_1, \ldots, x_k]$ at level k.

$$\begin{array}{c} (x_4 := 0) \\ (x_3 := 0) \\ x_2 > 2x_1^2, & (x_3 := 0) \\ x_2 := x_1^2 - x_1 \\ (x_1 := x_1) \end{array}$$

Updates for increasing levels $k \leq k'$

Level i > k: reset

Level k: unchanged or polynomial update $x_k := P$ for some $P \in \mathbb{Q}[x_1, \ldots, x_{k-1}]$ Level i < k: unchanged.

clocks $X = \{x_1, \ldots, x_n\}$ with x_k active at level k, set of modes Q with $\lambda : Q \to \{1, \ldots, n\}$ the state level, Guards: conjunctions of polynomial constraints $P \bowtie 0$ with \bowtie in $\{<, \leq, =, \geq, >\}$, and $P \in \mathbb{Q}[x_1, \ldots, x_k]$ at level k.

◆□▶◆□▶◆ミ▶◆ミ▶ ミ のへで 14/34

Updates for decreasing levels k > k'

Level i > k': reset Otherwise: unchanged.

PolITA: semantics

Clock valuations: $v = (v(x_1), \ldots, v(x_n)) \in \mathbb{R}^n$

The semantics of ${\mathcal A}$ is the transition system $\mathcal{T}_{\mathcal A}$

- configurations $S = Q \times \mathbb{R}^n$, initial configuration $s_0 = (q_0, \mathbf{0})$
- ▶ time steps from q at level k: $(q, v) \xrightarrow{d} (q, v +_k d)$, only x_k is active, with all clock values in $v +_k d$ unchanged except $(v +_k d)(x_k) = v(x_k) + d$
- **discrete steps** $(q, v) \xrightarrow{e} (q', v')$ for a transition $e : q \xrightarrow{g,a,u} q'$ if v satisfies the guard g and v' = v[u].

An execution is a sequence alternating time and discrete steps.
Semantics: example

 $(q_0, 0, 0) \xrightarrow{1.2} (q_0, 1.2, 0) \xrightarrow{a} (q_1, 1.2, 0) \xrightarrow{0.97} (q_1, 1.2, 0.97) \xrightarrow{b} (q_2, 1.2, 0.97) \dots$ Blue and green curves meet at real roots of $-2x^5 + x_1^4 + 20x_1^3 - 10x_1^2 - 50x_1 + 26$.

Reachability problem for PolITA

Build a finite automaton $Reg(\mathcal{A})$ time-abstract bisimilar to $\mathcal{T}_{\mathcal{A}}$

- states: (q, C) for suitable sets of valuations C ⊆ ℝⁿ, where polynomials of A have constant sign (and number of roots),
- ▶ abstract time steps: $(q, C) \rightarrow (q, succ(C))$ consistent with time elapsing in $\mathcal{T}_{\mathcal{A}}$,
- ▶ discrete steps: $(q, C) \xrightarrow{e} (q', C')$ consistent with discrete transitions in $\mathcal{T}_{\mathcal{A}}$.

The sets *C* will be cells from a cylindrical decomposition (CAD) adapted to the polynomials in A.

CAD: basic example

The decomposition starts from a set of polynomials and proceeds in two phases: Elimination phase and Lifting phase.

Starting from single polynomial $P_3 = x_1^2 + x_2^2 + x_3^2 - 1 \in \mathbb{Q}[x_1, x_2][x_3]$

Elimination phase

Produces polynomials in $\mathbb{Q}[x_1, x_2]$ and $\mathbb{Q}[x_1]$ required to determine the sign of P_3 .

- First polynomial $P_2 = x_1^2 + x_2^2 1$ is produced.
 - If $P_2 > 0$ then P_3 has no real root.
 - If $P_2 = 0$ then P_3 has 0 as single root.
 - If $P_2 < 0$ then P_3 has two real roots.

In turn the sign of $P_2 \in \mathbb{Q}[x_1][x_2]$ depends on $P_1 = x_1^2 - 1$.

Lifting phase

Produces partitions of \mathbb{R} , \mathbb{R}^2 and \mathbb{R}^3 organized in a tree of cells where the signs of these polynomials (in $\{-1, 0, 1\}$) are constant.

Lifting phase

Level 1 : partition of
$$\mathbb{R}$$
 in 5 cells
 $C_{-\infty} =] - \infty, -1[, C_{-1} = \{-1\}, C_0 =] - 1, 1[, C_1 = \{1\}, C_{+\infty} =]1, +\infty[$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 19/34

Lifting phase

Level 2 : partition of \mathbb{R}^2 Above $C_{-\infty}$: a single cell $C_{-\infty} \times \mathbb{R}$ Above C_{-1} : three cells $\{-1\}\times]-\infty, 0[, \{(-1,0)\}, \{-1\}\times]0, +\infty[$

Level 1 : partition of \mathbb{R} in 5 cells $C_{-\infty} =] - \infty, -1[, C_{-1} = \{-1\}, C_0 =] - 1, 1[, C_1 = \{1\}, C_{+\infty} =]1, +\infty[$

Level 2 above C₀

Level 2 above C_0

4 日 ト 4 日 ト 4 目 ト 4 目 ト 目 の 4 で 20/34

Level 2 above C₀

$$C_{0,1} \quad \begin{cases} -1 < x_1 < 1 \\ x_2 = \sqrt{1 - x_1^2} \end{cases}$$

$$C_{0,0} \quad \begin{cases} -1 < x_1 < 1 \\ -\sqrt{1 - x_1^2} < x_2 < \sqrt{1 - x_1^2} \end{cases}$$

$$C_{0,-1} \quad \begin{cases} -1 < x_1 < 1 \\ x_2 = -\sqrt{1 - x_1^2} \end{cases}$$

<□ ▶ < □ ▶ < 臣 ▶ < 臣 ▶ 三 の Q ○ 20/34

Level 2 above C_0

The tree of cells

using the sphere case with some refinements:

using the sphere case with some refinements:

using the sphere case with some refinements:

level 2 above R_1 : $R_{10} = (R_1, x_2 = 0)$, $R_{11} = (R_1, 0 < x_2 < \sqrt{1 - x_1^2})$,

using the sphere case with some refinements:

using the sphere case with some refinements:

Effective construction: Elimination

From an initial set of polynomials, the elimination phase produces in 2EXPTIME a family of polynomials $\mathcal{P} = \{\mathcal{P}_k\}_{k \leq n}$ with $\mathcal{P}_k \subseteq \mathbb{Q}[x_1, \dots, x_k]$ for level k.

Some polynomials do not always have the same degree and roots. For instance, $B = (2x_1 - 1)x_2^2 - 1$ is of degree 2 in x_2 if and only if $x_1 \neq \frac{1}{2}$.

For \mathcal{A}_2

Starting from $\{x_1, A\}$ and $\{x_2, B, C\}$ with $A = x_1^2 - x_1 - 1$ and $C = x_2 + x_1^2 - 5$ results in

▶
$$\mathcal{P}_1 = \{x_1, A, D, E, F, G\},$$

▶ $\mathcal{P}_2 = \{x_2, B, C\},$
with $D = 2x_1 - 1$, $E = x_1^2 - 5$, $F = -2x_1^5 + x_1^4 + 20x_1^3 - 10x_1^2 - 50x_1 + 26,$
 $G = 4(2x_1 - 1)^2$

Effective construction: Lifting

To build the tree of cells in the lifting phase, we need a suitable representation of the roots of these polynomials (and the intervals between them), obtained by iteratively increasing the level.

A description like $x_3 > \sqrt{1 - x_1^2 - x_2^2}$ cannot be obtained in general.

- ► A point is coded by "the *n*th root of *P*".
- ▶ The interval](n, P), (m, Q)[is coded by a root of (PQ)'.

This lifting phase can be performed on-the-fly, producing only the reachable part of the quotient automaton Reg(A).

Outline

Timed Automata from Alur, Dill (1990)

Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition Algorithmic issues

A result on Dynamical Systems

A dynamical system is a hybrid system with:

- a single system mode,
- several possible trajectories, hence non-deterministic choice when more than one are available,
- and guards.

A dynamical system is a hybrid system with:

- a single system mode,
- several possible trajectories, hence non-deterministic choice when more than one are available,
- and guards.

A dynamical system is a hybrid system with:

- a single system mode,
- several possible trajectories, hence non-deterministic choice when more than one are available,
- and guards.

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへで 26/34

A dynamical system is a hybrid system with:

- a single system mode,
- several possible trajectories, hence non-deterministic choice when more than one are available,
- and guards.

$$y_1 = f(t_1) \rightarrow y_2 = f(t_2) = g(t_3) \rightarrow y_3 = g(t_4)$$

 $t_1 \le t_2$ $t_3 \le t_4$

A dynamical system is a hybrid system with:

- a single system mode,
- several possible trajectories, hence non-deterministic choice when more than one are available,
- and guards.

Transition system:

$$y_1 = f(t_1) \rightarrow y_2 = f(t_2) = g(t_3) \rightarrow y_3 = g(t_4)$$

 $t_1 \le t_2$ $t_3 \le t_4$

Notations and examples

A dynamical system (\mathcal{M}, γ) :

- ▶ $\mathcal{M} = \langle M, \leqslant, ... \rangle$ a linearly ordered structure,
- ▶ $\gamma: V_1 \times V \rightarrow V_2$ for $V_1 \subseteq M^{k_1}$, $V \subseteq M$, $V_2 \subseteq M^{k_2}$, all (FO-)definable in \mathcal{M} ,

and a finite set of guards: definable subsets of V_2 .

Notations and examples

A dynamical system (\mathcal{M}, γ) :

- $\mathcal{M} = \langle M, \leqslant, ... \rangle$ a linearly ordered structure,
- ▶ $\gamma: V_1 \times V \rightarrow V_2$ for $V_1 \subseteq M^{k_1}$, $V \subseteq M$, $V_2 \subseteq M^{k_2}$, all (FO-)definable in \mathcal{M} ,

and a finite set of guards: definable subsets of V_2 .

Clocks have dynamics $\gamma : \mathbb{R}^n_+ \times [0, +\infty[\to \mathbb{R}^n_+ \text{ with } \gamma(\nu, t) = \gamma_{\nu}(t) = \nu + t.$

Notations and examples

A dynamical system (\mathcal{M}, γ) :

- ▶ $\mathcal{M} = \langle M, \leqslant, ... \rangle$ a linearly ordered structure,
- ▶ $\gamma: V_1 \times V \rightarrow V_2$ for $V_1 \subseteq M^{k_1}$, $V \subseteq M$, $V_2 \subseteq M^{k_2}$, all (FO-)definable in \mathcal{M} ,

and a finite set of guards: definable subsets of V_2 .

Bisimulations for dynamical systems

Bisimulations:

- ▶ Splitting system states (V₂) according to similar behaviours (consistent with guards and time elapsing)
- k-step bisimulation: similar behaviours up to k steps.

Bisimulations for dynamical systems

Bisimulations:

- ▶ Splitting system states (V₂) according to similar behaviours (consistent with guards and time elapsing)
- ▶ *k*-step bisimulation: similar behaviours up to *k* steps.

Bisimulation is undecidable

but under mild assumptions, k-step bisimulation is decidable for all $k \ge 0$.

Bisimulations for dynamical systems

Bisimulations:

- ▶ Splitting system states (V₂) according to similar behaviours (consistent with guards and time elapsing)
- k-step bisimulation: similar behaviours up to k steps.

Bisimulation is undecidable

but under mild assumptions, k-step bisimulation is decidable for all $k \ge 0$.

Theorem [Lafferriere, Pappas, Sastry 2000]

Bisimulation is decidable and induces a finite partition when: $\gamma : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is solution of $d\gamma(x, t)/dt = F(\gamma(x, t))$ definable in an o-minimal theory of \mathbb{R} .

O-minimal structures

A linearly ordered structure $\langle M, \leq, \ldots \rangle$ is o-minimal

if every definable set is a finite union of intervals with bounds in $M_{\pm\infty}$.

O-minimal structures

A linearly ordered structure $\langle M, \leq, \ldots \rangle$ is o-minimal

if every definable set is a finite union of intervals with bounds in $M_{\pm\infty}$.

A few examples: $(\mathbb{R}, \leq, +, \times)$, $(\mathbb{Q}, \leq, 1, +)$, $(\mathbb{Z}_{\geq 0}, \leq)$, $(\mathbb{R}, \leq, +, \times, exp)$

O-minimal structures

A linearly ordered structure $\langle M, \leq, \ldots \rangle$ is o-minimal

if every definable set is a finite union of intervals with bounds in $M_{\pm\infty}$.

A few examples: $(\mathbb{R}, \leq, +, \times)$, $(\mathbb{Q}, \leq, 1, +)$, $(\mathbb{Z}_{\geq 0}, \leq)$, $(\mathbb{R}, \leq, +, \times, exp)$

... and counter-examples:

- ▶ ($\mathbb{Q}, \leqslant, +, \times$)
- ► $(\mathbb{Z}_{\geqslant 0}, \leqslant, +)$
- ($\mathbb{R}, \leqslant, \sin$)

 $\begin{aligned} x^2 \leqslant 1 + 1 \Leftrightarrow -\sqrt{2} \leqslant x \leqslant \sqrt{2} \\ \exists z, x = z + z \Leftrightarrow x \text{ is even} \\ \sin(x) = 0 \Leftrightarrow x \in \pi\mathbb{Z} \end{aligned}$

◆□▶◆□▶◆ミ▶◆ミ▶ ミ のへで 29/34

[Pillay, Steinhorn 88]

Property 1

Let $(M, \leq, ...)$ be o-minimal and $f : M \to M$ be definable. There exists a finite partition $(\mathcal{I}_1, ..., \mathcal{I}_k)$ of M into intervals s.t., for all $j \leq k$:

- 1. $f_{|\mathcal{I}_i|}$ is constant, or
- 2. $f_{|\mathcal{I}_i|}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

[Pillay, Steinhorn 88]

Property 1

Let $(M, \leq, ...)$ be o-minimal and $f : M \to M$ be definable. There exists a finite partition $(\mathcal{I}_1, ..., \mathcal{I}_k)$ of M into intervals s.t., for all $j \leq k$:

- 1. $f_{|\mathcal{I}_i|}$ is constant, or
- 2. $f_{|\mathcal{I}_i|}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

[Pillay, Steinhorn 88]

Property 1

Let $(M, \leq, ...)$ be o-minimal and $f : M \to M$ be definable. There exists a finite partition $(\mathcal{I}_1, ..., \mathcal{I}_k)$ of M into intervals s.t., for all $j \leq k$:

- 1. $f_{|\mathcal{I}_j|}$ is constant, or
- 2. $f_{|\mathcal{I}_i|}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

Property 2

Let φ be an ℓ -variable formula. There exists \mathbf{N}_{φ} s.t., for all $b_2, \ldots, b_{\ell} \in M$, the set $\{a \in M \mid (a, b_2, \ldots, b_{\ell}) \models \varphi\}$ is a union of at most \mathbf{N}_{φ} intervals.

[Pillay, Steinhorn 88]

Property 1

Let $(M, \leq, ...)$ be o-minimal and $f : M \to M$ be definable. There exists a finite partition $(\mathcal{I}_1, ..., \mathcal{I}_k)$ of M into intervals s.t., for all $j \leq k$:

- 1. $f_{|\mathcal{I}_j|}$ is constant, or
- 2. $f_{|\mathcal{I}_i|}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

Property 2

Let φ be an ℓ -variable formula. There exists \mathbf{N}_{φ} s.t., for all $b_2, \ldots, b_{\ell} \in M$, the set $\{a \in M \mid (a, b_2, \ldots, b_{\ell}) \models \varphi\}$ is a union of at most \mathbf{N}_{φ} intervals.

[BBJ 18] Generalising Lafferriere et al.:

- \blacktriangleright o-minimal real theory \longrightarrow any o-minimal theory
- ▶ trajectories partition $\mathbb{R}^n \to$ trajectories may overlap

[BBJ 18] Generalising Lafferriere et al.:

- \blacktriangleright o-minimal real theory \rightarrow any o-minimal theory
- ▶ trajectories partition $\mathbb{R}^n \to$ trajectories may overlap

[BBJ 18] Generalising Lafferriere et al.:

- \blacktriangleright o-minimal real theory \rightarrow any o-minimal theory
- trajectories partition $\mathbb{R}^n \to$ trajectories may overlap

 $\gamma_{x_1}(M) \cap \gamma_{x_2}(M) \neq \emptyset$ $\gamma_{x_1}(M) \cap \gamma_{x_3}(M) = \emptyset$ $\gamma_{x_2}(M) \cap \gamma_{x_3}(M) \neq \emptyset$

[BBJ 18] Generalising Lafferriere et al.:

- \blacktriangleright o-minimal real theory \rightarrow any o-minimal theory
- trajectories partition $\mathbb{R}^n \to$ trajectories may overlap

[BBJ 18] Generalising Lafferriere et al.:

- o-minimal real theory \rightarrow any o-minimal theory
- trajectories partition $\mathbb{R}^n \to$ trajectories may overlap

In an o-minimal dynamical system

• if $V_1^*(x) \stackrel{\text{def}}{=} \{x' \mid x \sim^* x'\}$ is finite for all x, the bisimulation relation is **decidable**;

(FINITE CROSSING) (if the theory is decidable)

[BBJ 18] Generalising Lafferriere et al.:

- \blacktriangleright o-minimal real theory \rightarrow any o-minimal theory
- trajectories partition $\mathbb{R}^n \to$ trajectories may overlap

In an o-minimal dynamical system

• if $V_1^*(x) \stackrel{\text{def}}{=} \{x' \mid x \sim^* x'\}$ is finite for all x, the bisimulation relation is **decidable**;

(FINITE CROSSING) (if the theory is decidable)

• if the sizes $|V_1^*(x)|$ are uniformly bounded, (UNIFORM CROSSING) the bisimulation relation is definable and induces finite partition.

Idea of the proof

First step: decomposition

For all $x \in V_1$ with dynamics γ_x :

- ▶ Produce a classification of time intervals into *x*-static or *x*-adaptable intervals.
- If V₁(x) = {x' ∈ V₁ | x ~ x'} is finite, then there is a finite definable partition of the time set v into maximal x-static and x-adaptable intervals.
- For those \mathcal{I} , all states in $\gamma_x(\mathcal{I})$ are bisimilar.

Idea of the proof

First step: decomposition

For all $x \in V_1$ with dynamics γ_x :

- Produce a classification of time intervals into x-static or x-adaptable intervals.
- If V₁(x) = {x' ∈ V₁ | x ~ x'} is finite, then there is a finite definable partition of the time set v into maximal x-static and x-adaptable intervals.
- For those \mathcal{I} , all states in $\gamma_x(\mathcal{I})$ are bisimilar.

Second step: building a bisimulation graph

- with nodes (x, \mathcal{I}) for the intervals above,
- edges $(x, \mathcal{I}) \rightarrow (x, \mathcal{J})$ that represent time elapsing on γ_x ,
- ▶ ε -edges $(x, \mathcal{I}) \rightarrow (x', \mathcal{I}')$ that represent jumps between trajectories.

Example

Conclusion

Summary

- Reachability is decidable in two models without strong resets: Timed Automata and Polynomial Interrupt Timed Automata.
- Bisimulation is decidable in a richer model of dynamical systems, which can immediately be extended with modes and strong resets.

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 34/34

Going further

- Refine the crossing conditions,
- Add modes with weaker jump conditions.

Conclusion

Summary

- Reachability is decidable in two models without strong resets: Timed Automata and Polynomial Interrupt Timed Automata.
- Bisimulation is decidable in a richer model of dynamical systems, which can immediately be extended with modes and strong resets.

Going further

- Refine the crossing conditions,
- Add modes with weaker jump conditions.

Thank you