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Context: Verification of Security Properties

Information flow:
Transmission of information from a high level user to a low level user,
in a possibly illegal and/or indirect way.

A class of Security Properties:

Avoid information flow to preserve secret data during communications.
[Mantel 2000, Focardi, Gorrieri 2001, Bryans, Koutny, Mazaré, Ryan 2008].

Goal:
Check whether a system satisfies such properties.
[BKMR 2008, D’Souza, Holla, Raghavendra, Sprick 2011, Best, Darondeau,
Gorrieri 2011, Best, Darondeau 2012, Cassez, Dubreil, Marchand 2012, Dimitrova,
Finkbeiner, Kovács, Rabe, Seidl 2012, Clarkson, Finkbeiner, Koleini, Micinski,
Rabe, Sanchez 2014]

Our setting:

System behaviour described by a language = set of traces
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Examples
Given an alphabet A and a language L ⊆ A∗

◮ A = V ⊎ C ⊎ N a partition into visible, confidential and neutral actions.

Removal of confidential actions:
An observer cannot see if the confidential actions are erased: for any w ∈ L,
erasing all confidential actions in w results in a behaviour still in L.
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Examples
Given an alphabet A and a language L ⊆ A∗

◮ A = V ⊎ C ⊎ N a partition into visible, confidential and neutral actions.

Removal of confidential actions:
An observer cannot see if the confidential actions are erased: for any w ∈ L,
erasing all confidential actions in w results in a behaviour still in L.

Insertion of X -admissible confidential actions, with X ⊆ A:
for any w = w1w2 ∈ L such that w2 contains no confidential event and there exists
w3 ∈ A∗ and c ∈ C with w3c ∈ L and the X -letters in w1 and w3 are the same,
then w1cw2 also belongs to L.

◮ A = V ⊎ P a partition into visible actions and participant actions.

Strong anonymity of participants:
for any w ∈ L, replacing in w an action a ∈ P by any other action in P produces a
behaviour still in L.

◮ ϕ ⊆ L a subset of secret behaviours.

Opacity of ϕ in L:
any behaviour in ϕ is observed identically to another behaviour not in ϕ.
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Outline

Rational Information Flow Properties

General results
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Finite automata and finite transducers

◮ An automaton is a finite Labelled Transition System over a set of labels Lab.
With final states and Lab is alphabet A, it accepts a regular language in A∗.
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Rational observers and RIFPs

A rational observer
is a rational relation O ⊆ A∗ × B∗.
Observation of w ∈ A∗: O(w) = {w ′ ∈ B∗ | (w ,w ′) ∈ O}.
Observation of L ⊆ A∗: O(L) = ∪w∈LO(w)

A rational information flow property (RIFP) for language L

is any relation L1 ⊆ L2, where L1 and L2 are given by:

L1, L2 ::= L | O(L1) | L1 ∪ L2 | L1 ∩ L2

where O is a rational observer.

RIF (L) for a class of languages L

is the set of rational information flow properties for languages L ∈ L.
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Example 1: Removal of confidential actions

A = V ⊎C ⊎N a partition into visible, confidential and neutral actions.

An observer cannot see if the confidential actions are erased: for any behaviour
w ∈ L, erasing all confidential actions in w results in a behaviour still in L.

Translates as
π
C
(L) ⊆ L

where π
C
is the projection from A∗ onto (A \ C )∗:

c |ε, c ∈ C

a|a, a ∈ V ⊎ N
A morphism such that

π
C
(a) =

{

ε if a ∈ C

a otherwise
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Example 1: Removal of confidential actions

A = V ⊎C ⊎N a partition into visible, confidential and neutral actions.

An observer cannot see if the confidential actions are erased: for any behaviour
w ∈ L, erasing all confidential actions in w results in a behaviour still in L.

Translates as
π
C
(L) ⊆ L

where π
C
is the projection from A∗ onto (A \ C )∗:

c |ε, c ∈ C

a|a, a ∈ V ⊎ N
A morphism such that

π
C
(a) =

{

ε if a ∈ C

a otherwise

Proposition

Since π
C
is a rational observer, removal of confidential actions is an RIFP.
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Example 2: Insertion of confidential actions

A = V ⊎ C ⊎ N and X ⊆ A.

For any w = w1w2 ∈ L such that w2 contains no confidential event and there exists
w3 ∈ A∗ and c ∈ C with w3c ∈ L and the X -letters in w1 and w3 are the same,
then w1cw2 also belongs to L.

Translates as
⋃

c∈C

(l-insc(L) ∩ OX

c (L)) ⊆ L

where for each c ∈ C ,

◮ l-insc is the rational relation inserting c after the last confidential action,

◮ OX
c is defined by OX

c (u) = π
−1
X

(πX (c
−1u)).c .(V ⊎ N)∗ for u ∈ A∗.
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A = V ⊎ C ⊎ N and X ⊆ A.

For any w = w1w2 ∈ L such that w2 contains no confidential event and there exists
w3 ∈ A∗ and c ∈ C with w3c ∈ L and the X -letters in w1 and w3 are the same,
then w1cw2 also belongs to L.

Translates as
⋃

c∈C

(l-insc(L) ∩ OX

c (L)) ⊆ L

where for each c ∈ C ,

◮ l-insc is the rational relation inserting c after the last confidential action,

◮ OX
c is defined by OX

c (u) = π
−1
X

(πX (c
−1u)).c .(V ⊎ N)∗ for u ∈ A∗.

Proposition

All operations are rational observers, hence insertion of X -admissible confidential
actions is an RIFP.
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Example 3: Strong anonymity

A = V ⊎ P.
For any w ∈ L, replacing in w an action in P by another produces a behaviour in L.

Translates as
OP

SA(L) ⊆ L

where OP

SA
is a substitution:

v |v , v ∈ V

a|a′, (a, a′) ∈ P × P
A morphism such that

OP

SA
(a) =

{

P if a ∈ P

{a} otherwise
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where OP

SA
is a substitution:

v |v , v ∈ V

a|a′, (a, a′) ∈ P × P
A morphism such that

OP

SA
(a) =

{

P if a ∈ P

{a} otherwise

Proposition

A substitution is a rational observer, hence strong anonymity is an RIFP.
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Verification of RIFPs

For a class of languages L:

If L is closed under union, intersection, and rational transductions, and if the inclu-
sion is decidable in L, then any property in RIF (L) is decidable.
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If L is closed under union, intersection, and rational transductions, and if the inclu-
sion is decidable in L, then any property in RIF (L) is decidable.

For the class Reg of regular languages:

The problem of deciding a property in RIF (Reg) is PSPACE-complete.

Because regular languages have all the required closure properties and inclusion is
decidable in PSPACE in Reg .
PSAPCE-hardness comes from the fact that OK (w) = {w}∩K is a rational relation
if and only if K is a regular language.

Consequence:

Strong (and weak) anonymity [BKMR 2008], as well as all Basic Security Predicates
[Mantel 2000], are decidable (in PSPACE) for regular languages. We retrieve results
from [D’Souza et al., 2011].
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Verification of Opacity

ϕ ⊆ L a subset of secret behaviours

Any behaviour in ϕ is observed identically as another behaviour not in ϕ.

Restricted to rational observation functions:

Rational opacity

Given a rational function O as observer, the secret ϕ is rationally opaque in L for O
if

O(ϕ) ⊆ O(L \ ϕ)
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ϕ ⊆ L a subset of secret behaviours

Any behaviour in ϕ is observed identically as another behaviour not in ϕ.

Restricted to rational observation functions:

Rational opacity

Given a rational function O as observer, the secret ϕ is rationally opaque in L for O
if

O(ϕ) ⊆ O(L \ ϕ)

For regular secrets:

Rational opacity for regular secrets is an RIFP.

Consequence:

We retrieve the decidability result (in PSPACE) for rational opacity with regular
languages and regular secrets [Cassez et al., 2012].
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Declassification and revocation

Selective declassification (SD)

A = V ⊎ C ⊎D, where actions in D indicate declassification of confidential actions
Each d ∈ D declassifies a subset C (d) of C .

Selective revocation
A = V ⊎ P ⊎ R , where actions in R indicate revocation of anonymity for
participant actions in P

The subsets P(r), of actions subject to revocation by r ∈ R , form a partition of P .
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Declassification and revocation

Selective declassification (SD)

A = V ⊎ C ⊎D, where actions in D indicate declassification of confidential actions
Each d ∈ D declassifies a subset C (d) of C .

Selective revocation
A = V ⊎ P ⊎ R , where actions in R indicate revocation of anonymity for
participant actions in P

The subsets P(r), of actions subject to revocation by r ∈ R , form a partition of P .

Proposition

Both selective declassification and selective revocation are rational observers, hence
all related properties are RIFPs.
This applies to Intransitive Non Interference for SD (INISD) [BD12] and conditional
anonymity.
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Selective declassification

Example: D = {d1, d2}

Consider the last occurrence of d1, d2 in words of L:
5 possible declassification patterns Σ = {ε, d1, d2, d1d2, d2d1}

◮ σ = ε: w contains no action in D, then all confidential actions are invisible
OSD(w) = πV⊎D(w)

◮ σ = d1: w contains occurrences of d1 but not of d2.

w : d1

w1 w2

V1 = V ∪ {d1} ∪ C (d1) V

OSD(w) = πV1(w1)d1πV (w2)

◮ σ = d1d2: last occurrence of d1 precedes last occurrence of d2.

w : d1 d2

w1 w2 w3

V1 = V ∪ {d1, d2} ∪ C (d1) ∪ C (d2) V2 = V ∪ {d2} ∪ C (d2) V

OSD(w) = πV1(w1)d1πV2(w2)d2πV (w3)
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An Orwellian observer for SD

Example: D = {d1, d2}

OSD = Oε ⊎ Od1 ⊎ Od2 ⊎ Od1d2 ⊎ Od2d1

A sum of 5 functions with disjoint supports, one for each declassification pattern.

Oε: 0

v |v , v ∈ V ∪ D

c |ε, c ∈ C

Od1 : 0 1

v |v , v ∈ V ∪ {d1} ∪ C (d1)
c |ε, c ∈ C \ C (d1)

d1|d1

v |v , v ∈ V

c |ε, c ∈ C

Od1d2 : 0

v |v , v ∈ V ∪ {d1, d2} ∪ C (d1) ∪ C (d2)
c |ε, c ∈ C \ (C (d1) ∪ C (d2))

1 2

v |v , v ∈ V ∪ {d2} ∪ C (d2)
c |ε, c ∈ C \ C (d2)

d1|d1 d2|d2

v |v , v ∈ V

c |ε, c ∈ C
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Conclusion

Contribution

◮ We introduce rational information flow properties, based on rational
transducers for observations.

◮ We show that most properties defined up to now can be expressed as RIFPs.

◮ We give a generic result proving that RIFPs can be decided in PSPACE on
regular languages.

Future work

◮ Identify other classes of languages L with similar properties.

◮ Link our verification results with those based on model checking extensions of
LTL like SecLTL [DFKRS12] or even CTL∗ like HyperCTL∗ [CFKMRS14].
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Thank you
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