
1/33

Probabilistic Opacity
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Context: Information Flow

Goal: Detect/measure/compare/remove information leaks

Opacity: In a partially observed transition system, it is achieved when an
external observer can never be sure if a secret behaviour has occurred.
[Bryans, Koutny, Mazaré, Ryan 2008]
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ε c
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Secret: visiting a red state

hidden from observer

observing ad∗ dicloses the secret

acd∗ is ambiguous

A:

Opacity is used to express a large variety of information flow properties,
for instance: anonymity, non interference, conditional declassification.
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Outline

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement
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Opacity framework

Problems
I A transition system A with pathes Path(A),

I Some pathes are secret: Sec ⊆ Path(A),

I An external agent knows the system and observes its executions via a
function O on Path(A),

Qualitative problem

Does there exist a path ρ disclosing the secret: O−1(O(ρ)) ⊆ Sec ?
i.e. all pathes with the same observation as ρ are secret.

If no, all secret pathes are ambiguous and the system is opaque.

Quantitative problem

What is the “measure” of disclosing pathes ?
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Illustration

Sec O−1(o)
Classes leaking
their inclusion
into Sec

With Sec = Path(A) \ Sec :
No disclosing path iff
V = Sec \ O−1(O(Sec)) is empty Measuring the disclosure set V
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Verification and control of qualitative
opacity with regular secrets

On transition systems

I checking opacity is undecidable in general [BKMR08],

I PSPACE-complete for finite automata [Cassez, Dubreil, Marchand 09],
also with opacity variants [Saboori, Hadjicostis 13], and for any
functional transducer as observation [B., Mullins 14].

I Enforcement of opacity [Wu, Lafortune 12], [Marchand 11-15, with
many co-authors], [Tong, Ma, Li, Seatzu, Giua 16].

On Petri nets
I undecidable in general [BKMR08][B., Haar, Schmitz, Schwoon 17],

I ESPACE-complete for safe PNs, even when weak-fairness conditions
are added. (ESPACE is the class of problems that can be solved in
deterministic space 2O(n)) [BHSS17]
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Strong anonymity

Actions of participants: P

For any path ρ ∈ Path(A), replacing an action in P by any other one produces
a path still in Path(A).

Translates as opacity [BKMR08]

I O is the morphism into (Σ ∪ {]})∗ defined by:
O(a) = ] if a ∈ P and O(a) = a otherwise

I πP the projection on P∗

A is strongly anonymous w.r.t. P iff for any u ∈ P∗,

Secu = {ρ ∈ Path(A) | πP(ρ) 6= u ∧ |πP(ρ)| = |u|}
is opaque for A and O.

But also as another inclusion problem [BM14]

OP(Path(A)) ⊆ Path(A) for the substitution defined by:
OP(a) = P if a ∈ P and OP(a) = {a} otherwise
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Quantitative aspects

Several sources of uncertainty:

I Partial observation of executions

I Probabilities

↪→ based on randomness, resolved on the fly by the environment.

I Nondeterministic choice

↪→ resolved on the fly by an internal agent.

I Underspecification

↪→ resolved later on in the modeling process by refinement.
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Opacity under uncertainty

System

Attacker

I Probabilistic choice: Markov Chains
[B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]

I Combined with nondeterministic choice:
[B., Chatterjee, Sznajder 15] for MDPs and POMDPs,
[B., Haddad, Lefaucheux 17] for MDPs,

I Underspecification: [B., Kouchnarenko, Mullins, Sassolas 16] for IMCs.
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[B., Chatterjee, Sznajder 15] for MDPs and POMDPs,
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A toy example

Access control to a database inspired from [Biondi et al. 13]

a q0

M2 :

ε
q1

c

q3

d
q2

e
q4

[0.2, 1]

[0.2, 1]
1

[0, 1]

[0, 1]

[0, 1]

1

1

a r0

M1 :

ε

r ′1

ε

r1
c

r3

d
r2

e
r4

[0.2, 0.4]

[0.2, 1] 1

[0.1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

1

1

0: input user name, 1: input password, 3: access granted if correct
2: not on the list of authorized users, 4: reject
Sec = {0.1.3ω}; All states except 1 and 1′ are observable.
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Observable Markov chains

Idle
s0

Error
s2

Recover
s4

Success
s1

Failure

s3

1
2

1
3

1
6

1

3
8

1
2

1
8

1

1

A Markov Chain A = (S ,∆,O) over Σ:

I countable set S of states,

I ∆ : S → Dist(S),

I O : S → Σ ∪ {ε} observation function.

equipped with an initial distribution µ0.
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Opacity on MCs

ω-Disclosure of Sec in (A, µ0):

Discω(A, µ0,Sec) = PA,µ0(V ) for V = Sec \ O−1(O(Sec)).

Example with Sec : presence of s1 or s2, hidden by O

a

s0

ε

s2

cs3

ε

s1

cs4

d s5

1
3 4

9

2
9

1

1

1

1

1

A:

Path(A) O Sec? V ? PA
s0s2s

ω
5 adω 3 3 1/3

s0s3s
ω
5 acdω 7 7 4/9

s0s1s4s
ω
5 acdω 3 7 2/9

Discω(A, 1s0 ,Sec) = 1
3
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Finite disclosure

Restricting Sec to the set of pathes visiting states from a given subset

assuming a path remains secret once a secret state has been visited.

Observation sequence w in Σ∗ is:
disclosing if all pathes in O−1(w) are secret,
minimal disclosing if disclosing with no strict disclosing prefix.

I Disc(A, µ0,Sec): probability of minimal disclosing observations,

I Discn(A, µ0,Sec): probability of disclosing observations of length n.

a
s0

a

s∗

b

s11

a

s21

b

s22
...

1 1

1

1
2

1
4

1
8

1

Discω = 1
2

Disc = Discn = 0

Disc ≤ Discω, equality if A is convergent and finitely branching.
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Interactions with the system

Active attacker

The attacker consists of two components:

I The passive external observer,

I Some piece of code inside the system.

Worst case corresponds to maximal disclosure.

System designer

The designer has provided a first version with the required functionalities.
He must develop the access policy...

... to obtain minimal disclosure.
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Constraint Markov Chains

Idle
s0

Error
s2

Recover
s4

Success
s1

Failure

s3

x1

x2

x3

1

y2

y1

y3

1

1

M1 = (S ,T1,O) :

T1(s0) subset of:
0 ≤ x1, x2, x3 ≤ 1
x1 + x2 + x3 = 1

T1(s4) subset of:
0 ≤ y1, y2, y3 ≤ 1
y1 + y2 + y3 = 1

A CMC over Σ: [Jonsson, Larsen 1991] [Caillaud et al., 2011]

M = (S ,T ,O) is like an OMC with

I finite set of states S ,

I T : S → 2Dist(S).
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Subclasses of CMCs

MDP: Markov Decision Processes

For each s ∈ S , T (s) is a finite set.

LCMC: Linear CMCs

For each s ∈ S , T (s) is the set of distributions that are solutions of a linear
system.

IMC: Interval MC

For each s, T (s) is described by a family of intervals (I (s, s ′))s′∈S .

Relations
I IMC is a strict subclass of LCMC,

I Any LCMC can be transformed in an exponentially larger MDP.
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Examples

LCMC M2:

Idle
s0

Error
s2

. . .

Success
s1

Failure
s3

x1

x2

x3

x2 ≥ 2x3

x2 + x3 ≤ 1
2

µ1 = (1, 0, 0)
µ2 = ( 1

2 ,
1
2 , 0)

µ3 = ( 1
2 ,

1
3 ,

1
6 )

0 ≤ x1, x2, x3 ≤ 1
x1 + x2 + x3 = 1

IMC M3:

Idle
s0

Error
s2

. . .

Success
s1

Failure
s3

[ 1
2 , 1]

[0, 1
2 ]

[0, 1
6 ]

1
2
≤ x1 ≤ 1

0 ≤ x2 ≤ 1
2

0 ≤ x3 ≤ 1
6

µ4 = ( 5
6 , 0,

1
6 ) ∈ T3(s0)

µ4 /∈ T2(s0)
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From LCMCs to MDPs

•

•

•

µ1

µ2

µ3

x1

x2

x3

1
2

1

1
2

1
6

µ1 = (1, 0, 0)

µ2 = ( 1
2 ,

1
2 , 0)

µ3 = ( 1
2 ,

1
3 ,

1
6 )

Idle
q0

Error q2

Success q1

Failure q3

x1

x2

x3

Idle
q0

Error q2

Success q1

Failure q3

µ1, 1

µ2,
1
2
µ3,

1
2

µ2,
1
2

µ3,
1
3

µ3,
1
6
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Strategies on CMCs

a
r

b
s

]0, 1[

]0, 1[

1

A strategy for M = (S ,T ,O) with initial distribution µ0:

σ : FRuns(M)→ Dist(S)

For ρ = s0
µ1−→ s1 . . .

µn−→ sn, σ(ρ) ∈ T (sn).

Scheduling M with σ produces a (possibly infinite) MC Mσ.
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]0, 1[

1

a
r

a
rr

b
rs

1− p1

p1

1

a
rrr

b
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· · ·

1− p2

p2

1

A strategy for M = (S ,T ,O) with initial distribution µ0:
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Randomized strategies on MDPs

An MDP with distributions µ1 and µ2 for s0 and secret states {s2, s3}
Disc = 1

2 with the two strategies choosing µ1 or µ2 in s0

if they are known by the observer.

c

s0

a

s1

b

s2

a

s3

b

s4

µ1,
1
2

µ1,
1
2

µ2,
1
2

µ2,
1
2 µ1, 1

µ1, 1µ2, 1

µ2, 1

But Disc = 0 with randomized strategies σp such that
σp(s0) = pµ1 + (1− p)µ2 with 0 < p < 1. Necessary for minimisation.

A randomized strategy associates σ(ρ) ∈ Dist(T (sn))

with ρ = s0
µ1−→ s1 . . .

µn−→ sn (instead of σ(ρ) in T (sn)).
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Modal edges

An edge (s, s ′) is modal

if a strategy can block it completely.

Example on an IMC with Sec : presence of red, hidden by O.

a ε c
[0; 1]

[0; 1]

1

1

a ε c
]0; 1]

]0; 1]

1

1
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Modal edges

An edge (s, s ′) is modal

if a strategy can block it completely.

Example on an IMC with Sec : presence of red, hidden by O.

a ε c
[0; 1]

[0; 1]

1

1

a ε c
]0; 1]

]0; 1]

1

1

a ε c
1 1

1

a ε c
1− ε

ε

1

1

strategy
strategy strategy

Disc = 1 Disc = 0
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Maximal and minimal disclosure

For Sec in M with initial distribution µ0:

I Discmax(M, µ0,Sec) = supσ∈Strat(M)Disc(Mσ, µ0, Sec)

I Discmin(M, µ0, Sec) = infσ∈Strat(M)Disc(Mσ, µ0,Sec)

Several disclosure problems for a given M

I Value problem: compute the disclosure Discmax or Discmin.

I Quantitative decision problems: Given a threshold θ ∈ [0, 1],
is Discmax ≥ θ ? is Discmin ≤ θ ?

I Qualitative decision problems:
Limit-sure disclosure: the quantitative problem
with θ = 1 for maximisation and θ = 0 for minimisation.
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Maximal Disclosure

[BCS15] On MDPs, if observer ignores the strategies:

I The value can be computed in polynomial time;

I All problems are decidable.

[BKMS16]: For a non modal LCMC, the value can be computed in
EXPTIME.

[BHL17] On MDPs, if observer knows the strategies:

I Deterministic strategies are sufficient;

I The problem asking whether there exists a strategy producing value 1
is EXPTIME-complete;

I But the quantitative and limit-sure problems are undecidable.

Consequence:

The quantitative problem is undecidable for general LCMCs.
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Minimal Disclosure

[BHL17] On MDPs, if observer knows the strategies:

I Families of randomized strategies are necessary;

I The value can be computed in EXPTIME;

I All problems are decidable.
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Refinement for CMCs
Refinement of M2 by M1:

a
s0

M1 :

b

s1

b
s2

[0, 1]

[ 1
3 ,

2
3 ]

[ 1
4 ,

1
3 ]

1

1

a
r0

M2 : b
r1

[0, 1]

[0, 1] 1

1

1

1

Strong refinement [Jonsson, Larsen, 1991]

is a relation R ⊆ S1 × S2 compatible with labeling, containing (s1,init , s2,init)
and if s1Rs2 there is a mapping δ : S1 → Dist(S2) such that:
• all distributions in T1(s1) translate to S2 in a way compatible with T2(s2)
• if δ(s ′1)(s ′2) > 0 then s ′1Rs ′2.
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Monotonicity of maximal disclosure

No inclusion between sat(M1) = {M1,σ1 | σ1 ∈ Strat(M1)} and
sat(M2) = {M2,σ2 | σ2 ∈ Strat(M2)}.

Disclosure is monotonic for LCMCs:

IfM1 weakly refinesM2 with initial states s1,init and s2,init then for a secret
Sec , Discmax(M1, 1s1,init , Sec) ≤ Discmax(M2, 1s2,init ,Sec).

Construction of the relation

M2 M1

M1,σ1

R

sat1
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Monotonicity of maximal disclosure
No inclusion between sat(M1) = {M1,σ1 | σ1 ∈ Strat(M1)} and
sat(M2) = {M2,σ2 | σ2 ∈ Strat(M2)}.

Disclosure is monotonic for LCMCs:

IfM1 weakly refinesM2 with initial states s1,init and s2,init then for a secret
Sec , Discmax(M1, 1s1,init , Sec) ≤ Discmax(M2, 1s2,init ,Sec).

Construction of the relation

M2 M1

M1,σ1M2,σ2

R

sat1

R ◦ sat1

R′

sat2

IfM1 weakly refinesM2 then for any strategy σ1 ofM1, there is a strategy
σ2 of M2 such that M1,σ1 refines M2,σ2 .
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Example

a q0

M2 :

ε
q1

c

q3

d
q2

e
q4

[0.2, 1]

[0.2, 1]
1

[0, 1]

[0, 1]

[0, 1]

1

1

a r0

M1 :

ε

r ′1

ε

r1
c

r3

d
r2

e
r4

[0.2, 0.4]

[0.2, 1] 1

[0.1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

1

1

M2 is refined by M1,

Discmax(M2, 1r0 ,Sec) = 0.8 and Discmax(M1, 1q0 , Sec) = 0.
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A consequence for modeling

IMCs are not closed under conjunction but:

The conjunction of two IMCs M1 and M2 is an LCMC

Using results from [Caillaud et al, 2011]:

For LCMCs M1, M2 and M3

I M1 ∧M2 weakly refines both M1 and M2, hence:

Discmax(M1 ∧M2) ≤ min(Discmax(M1),Discmax(M2)).

I If M3 refines both M1 and M2 then it also weakly refines M1 ∧M2,
hence:

Discmax(M3) ≤ Discmax(M1 ∧M2).
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Conclusion
Opacity is a flexible way to express information flow properties

not necessarily preserved under arbitrary refinement.

Linear CMCs form a good class for compact specifications of
probabilistic systems with:

I nice closure properties;

I an increased security criterion with schedulers as adversaries;

I monotonicity of maximal disclosure;

I But the quantitative problem is undecidable in general, like for MDPs,
unless the structure is fixed.

Minimisation on MDPs

I require randomized strategies;

I and all quantitative problems are decidable.

Thank you
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Strict inclusion of sat(M) in sat(M)

An implementation not obtained by strategies

a
s0

b
s1

b
s2

[ 1
2 , 1]

[ 1
2 , 1]

1

1

Specification M

a
q0

b
q1

b
q2

1
2

1
2

1

1

A0 with single strategy

a
r0

b
r1

b
r2

b
r3

1
3

1
3

1
3

1

1

1

A1 implementation of M
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