Probabilistic Opacity

Béatrice Bérard

Université P. & M. Curie, LIP6 and Inria, LSV, ENS Cachan

Based on joint work with: S. Haddad, O. Kouchnarenko, E. Lefaucheux, J. Mullins, M. Sassolas

AFSEC, 21 juin 2017

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 1/33

Context: Information Flow

Goal: Detect/measure/compare/remove information leaks

Opacity: In a partially observed transition system, it is achieved when an external observer can never be sure if a secret behaviour has occurred. [Bryans, Koutny, Mazaré, Ryan 2008]

Secret: visiting a red state hidden from observer

observing *ad*^{*} dicloses the secret *acd*^{*} is ambiguous

Opacity is used to express a large variety of information flow properties, for instance: anonymity, non interference, conditional declassification.

Outline

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 3/33

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

Opacity framework

Problems

- A transition system \mathcal{A} with pathes $Path(\mathcal{A})$,
- Some pathes are secret: $Sec \subseteq Path(A)$,
- An external agent knows the system and observes its executions via a function O on Path(A),

Qualitative problem

Does there exist a path ρ disclosing the secret: $\mathcal{O}^{-1}(\mathcal{O}(\rho)) \subseteq Sec$? i.e. all pathes with the same observation as ρ are secret.

If no, all secret pathes are ambiguous and the system is **opaque**.

Quantitative problem

What is the "measure" of disclosing pathes ?

Illustration

With $\overline{Sec} = Path(A) \setminus Sec$: No disclosing path iff $V = Sec \setminus \mathcal{O}^{-1}(\mathcal{O}(\overline{Sec}))$ is empty

Measuring the disclosure set V

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ♀ ♡ ♀ ♡ 5/33

Verification and control of qualitative opacity with regular secrets

On transition systems

- checking opacity is undecidable in general [BKMR08],
- PSPACE-complete for finite automata [Cassez, Dubreil, Marchand 09], also with opacity variants [Saboori, Hadjicostis 13], and for any functional transducer as observation [B., Mullins 14].
 - Enforcement of opacity [Wu, Lafortune 12], [Marchand 11-15, with many co-authors], [Tong, Ma, Li, Seatzu, Giua 16].

On Petri nets

- undecidable in general [BKMR08][B., Haar, Schmitz, Schwoon 17],
- ESPACE-complete for safe PNs, even when weak-fairness conditions are added. (ESPACE is the class of problems that can be solved in deterministic space 2^{O(n)}) [BHSS17]

Strong anonymity

Actions of participants: P

For any path $\rho \in Path(A)$, replacing an action in P by any other one produces a path still in Path(A).

Translates as opacity [BKMR08]

- \mathcal{O} is the morphism into $(\Sigma \cup \{\sharp\})^*$ defined by: $\mathcal{O}(a) = \sharp$ if $a \in P$ and $\mathcal{O}(a) = a$ otherwise
- π_P the projection on P^*

 ${\mathcal A}$ is strongly anonymous w.r.t. P iff for any $u\in P^*$,

 $\mathit{Sec}_{u} = \{ \rho \in \mathit{Path}(\mathcal{A}) \mid \pi_{\mathcal{P}}(\rho) \neq u \land |\pi_{\mathcal{P}}(\rho)| = |u| \}$

is opaque for \mathcal{A} and \mathcal{O} .

Strong anonymity

Actions of participants: P

For any path $\rho \in Path(A)$, replacing an action in P by any other one produces a path still in Path(A).

Translates as opacity [BKMR08]

- \mathcal{O} is the morphism into $(\Sigma \cup \{\sharp\})^*$ defined by: $\mathcal{O}(a) = \sharp$ if $a \in P$ and $\mathcal{O}(a) = a$ otherwise
- π_P the projection on P^*

 ${\mathcal A}$ is strongly anonymous w.r.t. P iff for any $u\in P^*$,

$$Sec_u = \{ \rho \in Path(\mathcal{A}) \mid \pi_P(\rho) \neq u \land |\pi_P(\rho)| = |u| \}$$

is opaque for \mathcal{A} and \mathcal{O} .

But also as another inclusion problem [BM14] $\mathcal{O}_P(Path(\mathcal{A})) \subseteq Path(\mathcal{A})$ for the substitution defined by: $\mathcal{O}_P(a) = P$ if $a \in P$ and $\mathcal{O}_P(a) = \{a\}$ otherwise

Quantitative aspects

Several sources of uncertainty:

- Partial observation of executions
- Probabilities
- \hookrightarrow based on randomness, resolved on the fly by the environment.
 - Nondeterministic choice
- \hookrightarrow resolved on the fly by an internal agent.
 - Underspecification
- \hookrightarrow resolved later on in the modeling process by refinement.

Opacity under uncertainty

Probabilistic choice: Markov Chains
 [B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]

Opacity under uncertainty

- Probabilistic choice: Markov Chains
 [B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]
- Combined with nondeterministic choice:
 [B., Chatterjee, Sznajder 15] for MDPs and POMDPs,
 [B., Haddad, Lefaucheux 17] for MDPs,
- ► Underspecification: [B., Kouchnarenko, Mullins, Sassolas 16] for IMCs.

A toy example

Access control to a database inspired from [Biondi et al. 13]

0: input user name, 1: input password, 3: access granted if correct 2: not on the list of authorized users, 4: reject $Sec = \{0.1.3^{\omega}\}$; All states except 1 and 1' are observable.

Outline

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

Observable Markov chains $\frac{1}{2}$ $\frac{1}{2}$ Success **S**1 $\frac{1}{3}$ Recover Error ldle 'S4 S_0 **S**7 $\frac{3}{8}$ **s**3 ailure $\frac{1}{6}$ 휸

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 12/33

A Markov Chain $\mathcal{A} = (S, \Delta, \mathcal{O})$ over Σ :

- countable set S of states,
- $\Delta: S \rightarrow \mathcal{D}ist(S)$,
- $\mathcal{O}: S \to \Sigma \cup \{\varepsilon\}$ observation function.

equipped with an initial distribution μ_0 .

Opacity on MCs

 ω -Disclosure of *Sec* in (\mathcal{A}, μ_0) :

$$\textit{Disc}_{\omega}(\mathcal{A},\mu_{0},\textit{Sec}) = \mathbf{P}_{\mathcal{A},\mu_{0}}(V) \text{ for } V = \textit{Sec} \setminus \mathcal{O}^{-1}(\mathcal{O}(\overline{\textit{Sec}})).$$

Example with Sec: presence of s_1 or s_2 , hidden by \mathcal{O}

$\mathit{Path}(\mathcal{A})$	\mathcal{O}	Sec?	V?	$P_{\mathcal{A}}$
$s_0s_2s_5^\omega$	ad^ω	 Image: A set of the set of the	√	1/3
<i>s</i> ₀ <i>s</i> ₃ <i>s</i> ₅ ^ω	acd $^\omega$	×	×	4/9
$s_0s_1s_4s_5^\omega$	acd $^\omega$	 Image: A set of the set of the	×	2/9

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 13/33

 $Disc_{\omega}(\mathcal{A}, \mathbf{1}_{s_0}, Sec) = \frac{1}{3}$

Finite disclosure

Restricting Sec to the set of pathes visiting states from a given subset

assuming a path remains secret once a secret state has been visited.

Observation sequence w in Σ^* is: **disclosing** if all pathes in $\mathcal{O}^{-1}(w)$ are secret, **minimal disclosing** if disclosing with no strict disclosing prefix.

- ▶ $Disc(A, \mu_0, Sec)$: probability of minimal disclosing observations,
- ▶ $Disc_n(A, \mu_0, Sec)$: probability of disclosing observations of length *n*.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の Q @ 14/33

 $Disc \leq Disc_{\omega}$, equality if \mathcal{A} is convergent and finitely branching.

Outline

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ 15/33

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

Interactions with the system

Active attacker

The attacker consists of two components:

- The passive external observer,
- Some piece of code inside the system.

Worst case corresponds to maximal disclosure.

System designer

The designer has provided a first version with the required functionalities. He must develop the access policy...

... to obtain minimal disclosure.

Constraint Markov Chains

 $\mathcal{M}_1 = (S, T_1, \mathcal{O})$:

 $T_1(s_0)$ subset of: $0 \le x_1, x_2, x_3 \le 1$ $x_1 + x_2 + x_3 = 1$

 $T_1(s_4)$ subset of: $0 \le y_1, y_2, y_3 \le 1$ $y_1 + y_2 + y_3 = 1$

A CMC over Σ : [Jonsson, Larsen 1991] [Caillaud et al., 2011] $\mathcal{M} = (S, T, \mathcal{O})$ is like an OMC with • finite set of states S, • $T : S \rightarrow 2^{\mathcal{D}ist(S)}$.

Subclasses of CMCs

MDP: Markov Decision Processes

For each $s \in S$, T(s) is a finite set.

LCMC: Linear CMCs

For each $s \in S$, T(s) is the set of distributions that are solutions of a linear system.

IMC: Interval MC

For each s, T(s) is described by a family of intervals $(I(s, s'))_{s' \in S}$.

Relations

- IMC is a strict subclass of LCMC,
- Any LCMC can be transformed in an exponentially larger MDP.

Examples

LCMC \mathcal{M}_2 : IMC \mathcal{M}_3 : $[\frac{1}{2}, 1]$ Success x_1 Success **S**1 s_1 $[0, \frac{1}{2}]$ *x*₂ . . . Idle Idle Error Error *s*₀ *s*₀ **s**2 **s**2 Failure Failure Х3 $[0, \frac{1}{6}]$ **s**3 S٦ $0 < x_1, x_2, x_3 < 1$ $\begin{array}{c} \frac{1}{2} \leq x_1 \leq 1\\ 0 \leq x_2 \leq \frac{1}{2}\\ 0 \leq x_3 \leq \frac{1}{6} \end{array}$ $x_1 + x_2 + x_3 = 1$ $x_2 \ge 2x_3$ $x_2 + x_3 \leq \frac{1}{2}$ $\mu_1 = (1, 0, 0)$ $\mu_2 = (\frac{1}{2}, \frac{1}{2}, 0)$ $\mu_4 = (\frac{5}{6}, 0, \frac{1}{6}) \in T_3(s_0)$ $\mu_3 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ $\mu_4 \notin T_2(s_0)$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 19/33

From LCMCs to MDPs

Strategies on CMCs

▲□▶▲@▶▲≣▶▲≣▶ ≣ ዏ�? 21/33

Strategies on CMCs

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 21/33

A strategy for $\mathcal{M} = (S, T, \mathcal{O})$ with initial distribution μ_0 :

 $\sigma: FRuns(\mathcal{M}) \to \mathcal{D}ist(S)$ For $\rho = s_0 \xrightarrow{\mu_1} s_1 \dots \xrightarrow{\mu_n} s_n, \ \sigma(\rho) \in T(s_n).$

Scheduling \mathcal{M} with σ produces a (possibly infinite) MC \mathcal{M}_{σ} .

Strategies on CMCs

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 21/33

A strategy for $\mathcal{M} = (S, T, \mathcal{O})$ with initial distribution μ_0 :

 $\sigma: FRuns(\mathcal{M}) \to \mathcal{D}ist(S)$ For $\rho = s_0 \xrightarrow{\mu_1} s_1 \dots \xrightarrow{\mu_n} s_n, \ \sigma(\rho) \in T(s_n).$

Scheduling \mathcal{M} with σ produces a (possibly infinite) MC \mathcal{M}_{σ} .

Randomized strategies on MDPs

An MDP with distributions μ_1 and μ_2 for s_0 and secret states $\{s_2, s_3\}$

 $Disc = \frac{1}{2}$ with the two strategies choosing μ_1 or μ_2 in s_0 if they are known by the observer.

But Disc = 0 with randomized strategies σ_p such that $\sigma_p(s_0) = p\mu_1 + (1-p)\mu_2$ with 0 . Necessary for minimisation.

▲□▶▲舂▶★≧▶★≧▶ ≧ の�♡ 22/33

A randomized strategy associates $\sigma(\rho) \in Dist(T(s_n))$

with $\rho = s_0 \xrightarrow{\mu_1} s_1 \dots \xrightarrow{\mu_n} s_n$ (instead of $\sigma(\rho)$ in $T(s_n)$).

Modal edges

An edge (s, s') is modal

if a strategy can block it completely.

Example on an IMC with Sec : presence of red, hidden by \mathcal{O} .

Modal edges

An edge (s, s') is modal

if a strategy can block it completely.

Example on an IMC with Sec : presence of red, hidden by \mathcal{O} .

Maximal and minimal disclosure

For Sec in \mathcal{M} with initial distribution μ_0 :

- $\blacktriangleright \textit{Disc}_{max}(\mathcal{M}, \mu_0, \textit{Sec}) = \textit{sup}_{\sigma \in \textit{Strat}(\mathcal{M})}\textit{Disc}(\mathcal{M}_{\sigma}, \mu_0, \textit{Sec})$
 - $inf_{\sigma \in Strat(\mathcal{M})} Disc(\mathcal{M}_{\sigma}, \mu_{0}, Sec) = inf_{\sigma \in Strat(\mathcal{M})} Disc(\mathcal{M}_{\sigma}, \mu_{0}, Sec)$

Several disclosure problems for a given \mathcal{M}

- ► Value problem: compute the disclosure *Disc*_{max} or *Disc*_{min}.
- Quantitative decision problems: Given a threshold θ ∈ [0, 1], is Disc_{max} ≥ θ ? is Disc_{min} ≤ θ ?
- Qualitative decision problems:

Limit-sure disclosure: the quantitative problem with $\theta = 1$ for maximisation and $\theta = 0$ for minimisation.

Maximal Disclosure

[BCS15] On MDPs, if observer ignores the strategies:

- The value can be computed in polynomial time;
- All problems are decidable.

[BKMS16]: For a non modal LCMC, the value can be computed in EXPTIME.

[BHL17] On MDPs, if observer knows the strategies:

- Deterministic strategies are sufficient;
- The problem asking whether there exists a strategy producing value 1 is EXPTIME-complete;
- But the quantitative and limit-sure problems are undecidable.

Consequence:

The quantitative problem is undecidable for general LCMCs.

Minimal Disclosure

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@ 26/33

[BHL17] On MDPs, if observer knows the strategies:

- Families of randomized strategies are necessary;
- The value can be computed in EXPTIME;
- All problems are decidable.

Outline

◆□ ▶ ◆ @ ▶ ◆ ∃ ▶ ◆ ∃ ▶ ○ ∃ • の Q @ 27/33

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

Refinement for CMCs

Refinement of \mathcal{M}_2 by \mathcal{M}_1 :

Strong refinement

[Jonsson, Larsen, 1991]

is a relation $\mathcal{R} \subseteq S_1 \times S_2$ compatible with labeling, containing $(s_{1,init}, s_{2,init})$ and if $s_1 \mathcal{R} s_2$ there is a mapping $\delta : S_1 \to \mathcal{D}ist(S_2)$ such that:

- all distributions in $T_1(s_1)$ translate to S_2 in a way compatible with $T_2(s_2)$
- if $\delta(s'_1)(s'_2) > 0$ then $s'_1 \mathcal{R} s'_2$.

No inclusion between $\underline{sat}(\mathcal{M}_1) = \{\mathcal{M}_{1,\sigma_1} \mid \sigma_1 \in Strat(\mathcal{M}_1)\}$ and $\underline{sat}(\mathcal{M}_2) = \{\mathcal{M}_{2,\sigma_2} \mid \sigma_2 \in Strat(\mathcal{M}_2)\}.$

Disclosure is monotonic for LCMCs:

If \mathcal{M}_1 weakly refines \mathcal{M}_2 with initial states $s_{1,init}$ and $s_{2,init}$ then for a secret Sec, $Disc_{\max}(\mathcal{M}_1, \mathbf{1}_{s_{1,init}}, Sec) \leq Disc_{\max}(\mathcal{M}_2, \mathbf{1}_{s_{2,init}}, Sec)$.

Construction of the relation

$$\mathcal{M}_2 \xleftarrow{\mathcal{R}} \mathcal{M}_1$$

$$\uparrow sat_1$$
 \mathcal{M}_{1,σ_1}

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 29/33

No inclusion between $\underline{sat}(\mathcal{M}_1) = \{\mathcal{M}_{1,\sigma_1} \mid \sigma_1 \in Strat(\mathcal{M}_1)\}$ and $\underline{sat}(\mathcal{M}_2) = \{\mathcal{M}_{2,\sigma_2} \mid \sigma_2 \in Strat(\mathcal{M}_2)\}.$

Disclosure is monotonic for LCMCs:

If \mathcal{M}_1 weakly refines \mathcal{M}_2 with initial states $s_{1,init}$ and $s_{2,init}$ then for a secret Sec, $Disc_{\max}(\mathcal{M}_1, \mathbf{1}_{s_{1,init}}, Sec) \leq Disc_{\max}(\mathcal{M}_2, \mathbf{1}_{s_{2,init}}, Sec)$.

Construction of the relation

▲□▶▲冊▶▲壹▶▲壹▶ 壹 ∽��♡ 29/33

No inclusion between $\underline{sat}(\mathcal{M}_1) = \{\mathcal{M}_{1,\sigma_1} \mid \sigma_1 \in Strat(\mathcal{M}_1)\}$ and $\underline{sat}(\mathcal{M}_2) = \{\mathcal{M}_{2,\sigma_2} \mid \sigma_2 \in Strat(\mathcal{M}_2)\}.$

Disclosure is monotonic for LCMCs:

If \mathcal{M}_1 weakly refines \mathcal{M}_2 with initial states $s_{1,init}$ and $s_{2,init}$ then for a secret Sec, $Disc_{\max}(\mathcal{M}_1, \mathbf{1}_{s_{1,init}}, Sec) \leq Disc_{\max}(\mathcal{M}_2, \mathbf{1}_{s_{2,init}}, Sec)$.

Construction of the relation

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�? 29/33

No inclusion between $\underline{sat}(\mathcal{M}_1) = \{\mathcal{M}_{1,\sigma_1} \mid \sigma_1 \in Strat(\mathcal{M}_1)\}$ and $\underline{sat}(\mathcal{M}_2) = \{\mathcal{M}_{2,\sigma_2} \mid \sigma_2 \in Strat(\mathcal{M}_2)\}.$

Disclosure is monotonic for LCMCs:

If \mathcal{M}_1 weakly refines \mathcal{M}_2 with initial states $s_{1,init}$ and $s_{2,init}$ then for a secret Sec, $\text{Disc}_{\max}(\mathcal{M}_1, \mathbf{1}_{s_{1,init}}, \text{Sec}) \leq \text{Disc}_{\max}(\mathcal{M}_2, \mathbf{1}_{s_{2,init}}, \text{Sec})$.

Construction of the relation

If \mathcal{M}_1 weakly refines \mathcal{M}_2 then for any strategy σ_1 of \mathcal{M}_1 , there is a strategy σ_2 of \mathcal{M}_2 such that \mathcal{M}_{1,σ_1} refines \mathcal{M}_{2,σ_2} .

Example

 \mathcal{M}_2 is refined by \mathcal{M}_1 ,

 $\textit{Disc}_{\max}(\mathcal{M}_2, \mathbf{1}_{r_0}, \textit{Sec}) = 0.8 \text{ and } \textit{Disc}_{\max}(\mathcal{M}_1, \mathbf{1}_{q_0}, \textit{Sec}) = 0.$

A consequence for modeling

IMCs are not closed under conjunction but:

The conjunction of two IMCs \mathcal{M}_1 and \mathcal{M}_2 is an LCMC

Using results from [Caillaud et al, 2011]:

For LCMCs \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3

 $\mathcal{M}_1 \wedge \mathcal{M}_2$ weakly refines both \mathcal{M}_1 and \mathcal{M}_2 , hence:

 $\textit{Disc}_{\max}(\mathcal{M}_1 \land \mathcal{M}_2) \leq \textit{min}(\textit{Disc}_{\max}(\mathcal{M}_1),\textit{Disc}_{\max}(\mathcal{M}_2)).$

• If \mathcal{M}_3 refines both \mathcal{M}_1 and \mathcal{M}_2 then it also weakly refines $\mathcal{M}_1 \wedge \mathcal{M}_2$, hence:

 $\textit{Disc}_{\max}(\mathcal{M}_3) \leq \textit{Disc}_{\max}(\mathcal{M}_1 \land \mathcal{M}_2).$

Conclusion

Opacity is a flexible way to express information flow properties not necessarily preserved under arbitrary refinement.

Linear CMCs form a good class for compact specifications of probabilistic systems with:

- nice closure properties;
- an increased security criterion with schedulers as adversaries;
- monotonicity of maximal disclosure;
- But the quantitative problem is undecidable in general, like for MDPs, unless the structure is fixed.

Minimisation on MDPs

- require randomized strategies;
- and all quantitative problems are decidable.

Conclusion

Opacity is a flexible way to express information flow properties not necessarily preserved under arbitrary refinement.

Linear CMCs form a good class for compact specifications of probabilistic systems with:

- nice closure properties;
- an increased security criterion with schedulers as adversaries;
- monotonicity of maximal disclosure;
- But the quantitative problem is undecidable in general, like for MDPs, unless the structure is fixed.

Minimisation on MDPs

- require randomized strategies;
- and all quantitative problems are decidable.

Thank you

◆□▶▲@▶★≣▶★≣▶ ≣ のへで 32/33

Strict inclusion of $\underline{sat}(\mathcal{M})$ in $\underline{sat}(\mathcal{M})$

 \mathcal{A}_1 implementation of \mathcal{M}

 \mathcal{M} \mathcal{A}_0 with single strategy

Specification \mathcal{M} \mathcal{A}_0 w