# Probabilistic Opacity 

Béatrice Bérard

Université P. \& M. Curie, LIP6 and Inria, LSV, ENS Cachan
Based on joint work with:
S. Haddad, O. Kouchnarenko, E. Lefaucheux, J. Mullins, M. Sassolas

AFSEC, 21 juin 2017

## Context: Information Flow

## Goal: Detect/measure/compare/remove information leaks

Opacity: In a partially observed transition system, it is achieved when an external observer can never be sure if a secret behaviour has occurred. [Bryans, Koutny, Mazaré, Ryan 2008]


Opacity is used to express a large variety of information flow properties, for instance: anonymity, non interference, conditional declassification.

## Outline

## A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

## Opacity framework

## Problems

- A transition system $\mathcal{A}$ with pathes $\operatorname{Path}(\mathcal{A})$,
- Some pathes are secret: $\operatorname{Sec} \subseteq \operatorname{Path}(\mathcal{A})$,
- An external agent knows the system and observes its executions via a function $\mathcal{O}$ on $\operatorname{Path}(\mathcal{A})$,


## Qualitative problem

Does there exist a path $\rho$ disclosing the secret: $\mathcal{O}^{-1}(\mathcal{O}(\rho)) \subseteq \operatorname{Sec}$ ?
i.e. all pathes with the same observation as $\rho$ are secret.

If no, all secret pathes are ambiguous and the system is opaque.

Quantitative problem
What is the "measure" of disclosing pathes ?

## Illustration



Sec $\square$
$\mathcal{O}^{-1}(o)$


Classes leaking their inclusion into Sec

With $\overline{\operatorname{Sec}}=\operatorname{Path}(\mathcal{A}) \backslash \operatorname{Sec}:$
No disclosing path iff
$V=\operatorname{Sec} \backslash \mathcal{O}^{-1}(\mathcal{O}(\overline{\operatorname{Sec}}))$ is empty
Measuring the disclosure set $V$

## Verification and control of qualitative opacity with regular secrets

On transition systems
checking opacity is undecidable in general [BKMR08], PSPACE-complete for finite automata [Cassez, Dubreil, Marchand 09], also with opacity variants [Saboori, Hadjicostis 13], and for any functional transducer as observation [B., Mullins 14].
Enforcement of opacity [Wu, Lafortune 12], [Marchand 11-15, with many co-authors], [Tong, Ma, Li, Seatzu, Giua 16].

On Petri nets
undecidable in general [BKMR08][B., Haar, Schmitz, Schwoon 17], ESPACE-complete for safe PNs, even when weak-fairness conditions are added. (ESPACE is the class of problems that can be solved in deterministic space $2^{O(n)}$ ) [BHSS17]

## Strong anonymity

## Actions of participants: $P$

For any path $\rho \in \operatorname{Path}(\mathcal{A})$, replacing an action in $P$ by any other one produces a path still in $\operatorname{Path}(\mathcal{A})$.

## Translates as opacity [BKMR08]

$\mathcal{O}$ is the morphism into $(\Sigma \cup\{\sharp\})^{*}$ defined by:
$\mathcal{O}(a)=\sharp$ if $a \in P$ and $\mathcal{O}(a)=a$ otherwise
$\pi_{P}$ the projection on $P^{*}$
$\mathcal{A}$ is strongly anonymous w.r.t. $P$ iff for any $u \in P^{*}$,

$$
\operatorname{Sec}_{u}=\left\{\rho \in \operatorname{Path}(\mathcal{A})\left|\pi_{P}(\rho) \neq u \wedge\right| \pi_{P}(\rho)|=|u|\}\right.
$$

is opaque for $\mathcal{A}$ and $\mathcal{O}$.

## Strong anonymity

Actions of participants: $P$
For any path $\rho \in \operatorname{Path}(\mathcal{A})$, replacing an action in $P$ by any other one produces a path still in $\operatorname{Path}(\mathcal{A})$.

## Translates as opacity [BKMR08]

$\mathcal{O}$ is the morphism into $(\Sigma \cup\{\sharp\})^{*}$ defined by:
$\mathcal{O}(a)=\sharp$ if $a \in P$ and $\mathcal{O}(a)=a$ otherwise
$\pi_{P}$ the projection on $P^{*}$
$\mathcal{A}$ is strongly anonymous w.r.t. $P$ iff for any $u \in P^{*}$,

$$
\operatorname{Sec}_{u}=\left\{\rho \in \operatorname{Path}(\mathcal{A})\left|\pi_{P}(\rho) \neq u \wedge\right| \pi_{P}(\rho)|=|u|\}\right.
$$

is opaque for $\mathcal{A}$ and $\mathcal{O}$.
But also as another inclusion problem [BM14]
$\mathcal{O}_{P}(\operatorname{Path}(\mathcal{A})) \subseteq \operatorname{Path}(\mathcal{A})$ for the substitution defined by:
$\mathcal{O}_{P}(a)=P$ if $a \in P$ and $\mathcal{O}_{P}(a)=\{a\}$ otherwise

## Quantitative aspects

## Several sources of uncertainty:

- Partial observation of executions
- Probabilities
$\hookrightarrow$ based on randomness, resolved on the fly by the environment.
- Nondeterministic choice
$\hookrightarrow$ resolved on the fly by an internal agent.
- Underspecification
$\hookrightarrow$ resolved later on in the modeling process by refinement.


## Opacity under uncertainty



- Probabilistic choice: Markov Chains
[B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]


## Opacity under uncertainty



- Probabilistic choice: Markov Chains
[B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]
- Combined with nondeterministic choice:
[B., Chatterjee, Sznajder 15] for MDPs and POMDPs,
[B., Haddad, Lefaucheux 17] for MDPs,
- Underspecification: [B., Kouchnarenko, Mullins, Sassolas 16] for IMCs.


## A toy example

Access control to a database inspired from [Biondi et al. 13]
$\mathcal{M}_{2}$ :
$[0,1]$

$\mathcal{M}_{1}:$


0: input user name, 1: input password, 3: access granted if correct 2: not on the list of authorized users, 4: reject Sec $=\left\{0.1 .3^{\omega}\right\}$; All states except 1 and $1^{\prime}$ are observable.

## Outline

A brief overview on opacity

## Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

## Observable Markov chains



## A Markov Chain $\mathcal{A}=(S, \Delta, \mathcal{O})$ over $\Sigma$ :

- countable set $S$ of states,
- $\Delta: S \rightarrow \mathcal{D i s t}(S)$,
- $\mathcal{O}: S \rightarrow \Sigma \cup\{\varepsilon\}$ observation function.
equipped with an initial distribution $\mu_{0}$.


## Opacity on MCs

## $\omega$-Disclosure of $\operatorname{Sec}$ in $\left(\mathcal{A}, \mu_{0}\right)$ :

$\operatorname{Disc}_{\omega}\left(\mathcal{A}, \mu_{0}, \operatorname{Sec}\right)=\mathbf{P}_{\mathcal{A}, \mu_{0}}(V)$ for $V=\operatorname{Sec} \backslash \mathcal{O}^{-1}(\mathcal{O}(\overline{\operatorname{Sec}}))$.

Example with Sec: presence of $s_{1}$ or $s_{2}$, hidden by $\mathcal{O}$


| $\operatorname{Path}(\mathcal{A})$ | $\mathcal{O}$ | $\operatorname{Sec} ?$ | $V ?$ | $\mathbf{P}_{\mathcal{A}}$ |
| :--- | :--- | :---: | :---: | :---: |
| $s_{0} s_{2} s_{5}^{\omega}$ | $a d^{\omega}$ | $\checkmark$ | $\checkmark$ | $1 / 3$ |
| $s_{0} s_{3} s_{5}^{\omega}$ | $a c d^{\omega}$ | $X$ | $X$ | $4 / 9$ |
| $s_{0} s_{1} s_{4} s_{5}^{\omega}$ | $a c d^{\omega}$ | $\checkmark$ | $X$ | $2 / 9$ |

$\operatorname{Disc} c_{\omega}\left(\mathcal{A}, \mathbf{1}_{s_{0}}, \operatorname{Sec}\right)=\frac{1}{3}$

## Finite disclosure

## Restricting Sec to the set of pathes visiting states from a given subset

assuming a path remains secret once a secret state has been visited.
Observation sequence $w$ in $\Sigma^{*}$ is: disclosing if all pathes in $\mathcal{O}^{-1}(w)$ are secret, minimal disclosing if disclosing with no strict disclosing prefix.

- $\operatorname{Disc}\left(\mathcal{A}, \mu_{0}, S e c\right):$ probability of minimal disclosing observations,
- $\operatorname{Disc}_{n}\left(\mathcal{A}, \mu_{0}, \operatorname{Sec}\right):$ probability of disclosing observations of length $n$.


$$
\operatorname{Disc}_{\omega}=\frac{1}{2}
$$

$$
\text { Disc }=D i s c_{n}=0
$$

Disc $\leq$ Disc $_{\omega}$, equality if $\mathcal{A}$ is convergent and finitely branching.

## Outline

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

## Interactions with the system

Active attacker


The attacker consists of two components:

- The passive external observer,
- Some piece of code inside the system.

Worst case corresponds to maximal disclosure.
System designer
The designer has provided a first version with the required functionalities. He must develop the access policy...
... to obtain minimal disclosure.

## Constraint Markov Chains



$$
\mathcal{M}_{1}=\left(S, T_{1}, \mathcal{O}\right):
$$

$T_{1}\left(s_{0}\right)$ subset of:
$0 \leq x_{1}, x_{2}, x_{3} \leq 1$
$x_{1}+x_{2}+x_{3}=1$
$T_{1}\left(s_{4}\right)$ subset of:
$0 \leq y_{1}, y_{2}, y_{3} \leq 1$
$y_{1}+y_{2}+y_{3}=1$

## A CMC over $\sum$ : [Jonsson, Larsen 1991] [Caillaud et al., 2011]

$\mathcal{M}=(S, T, \mathcal{O})$ is like an $O M C$ with

- finite set of states $S$,
- $T: S \rightarrow 2^{\text {Dist(S) }}$.


## Subclasses of CMCs

## MDP: Markov Decision Processes

For each $s \in S, T(s)$ is a finite set.

## LCMC: Linear CMCs

For each $s \in S, T(s)$ is the set of distributions that are solutions of a linear system.

## IMC: Interval MC

For each $s, T(s)$ is described by a family of intervals $\left(I\left(s, s^{\prime}\right)\right)_{s^{\prime} \in S}$.

## Relations

IMC is a strict subclass of LCMC,
Any LCMC can be transformed in an exponentially larger MDP.

## Examples

LCMC $\mathcal{M}_{2}$ :


IMC $\mathcal{M}_{3}$ :

$$
\begin{array}{ll}
\quad 0 \leq x_{1}, x_{2}, x_{3} \leq 1 & \\
x_{2} \geq 2 x_{3} \quad x_{1}+x_{2}+x_{3}=1 & \frac{1}{2} \leq x_{1} \leq 1 \\
x_{2}+x_{3} \leq \frac{1}{2} & 0 \leq x_{2} \leq \frac{1}{2} \\
& 0 \leq x_{3} \leq \frac{1}{6} \\
\mu_{1}=(1,0,0) & \\
\mu_{2}=\left(\frac{1}{2}, \frac{1}{2}, 0\right) & \mu_{4}=\left(\frac{5}{6}, 0, \frac{1}{6}\right) \in T_{3}\left(s_{0}\right) \\
\mu_{3}=\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right) & \mu_{4} \notin T_{2}\left(s_{0}\right)
\end{array}
$$



## From LCMCs to MDPs

$$
\mu_{1}=(1,0,0)
$$

$$
\xrightarrow[q_{0}]{\text { Idle }}{ }^{x_{2}} \text { Error } q_{2}
$$

$$
\rightarrow
$$

# Strategies on CMCs 



## Strategies on CMCs



A strategy for $\mathcal{M}=(S, T, \mathcal{O})$ with initial distribution $\mu_{0}$ :
$\sigma: \operatorname{FRuns}(\mathcal{M}) \rightarrow \operatorname{Dist}(S)$
For $\rho=s_{0} \xrightarrow{\mu_{1}} s_{1} \ldots \xrightarrow{\mu_{n}} s_{n}, \quad \sigma(\rho) \in T\left(s_{n}\right)$.
Scheduling $\mathcal{M}$ with $\sigma$ produces a (possibly infinite) $\mathrm{MC} \mathcal{M}_{\sigma}$.

## Strategies on CMCs


...

A strategy for $\mathcal{M}=(S, T, \mathcal{O})$ with initial distribution $\mu_{0}$ :
$\sigma: \operatorname{FRuns}(\mathcal{M}) \rightarrow \operatorname{Dist}(S)$
For $\rho=s_{0} \xrightarrow{\mu_{1}} s_{1} \ldots \xrightarrow{\mu_{n}} s_{n}, \quad \sigma(\rho) \in T\left(s_{n}\right)$.
Scheduling $\mathcal{M}$ with $\sigma$ produces a (possibly infinite) $\mathrm{MC} \mathcal{M}_{\sigma}$.

## Randomized strategies on MDPs

An MDP with distributions $\mu_{1}$ and $\mu_{2}$ for $s_{0}$ and secret states $\left\{s_{2}, s_{3}\right\}$
Disc $=\frac{1}{2}$ with the two strategies choosing $\mu_{1}$ or $\mu_{2}$ in $s_{0}$ if they are known by the observer.


But Disc $=0$ with randomized strategies $\sigma_{p}$ such that $\sigma_{p}\left(s_{0}\right)=p \mu_{1}+(1-p) \mu_{2}$ with $0<p<1$. Necessary for minimisation.

## A randomized strategy associates $\sigma(\rho) \in \operatorname{Dist}\left(T\left(s_{n}\right)\right)$

with $\rho=s_{0} \xrightarrow{\mu_{1}} s_{1} \ldots \xrightarrow{\mu_{n}} s_{n}$ (instead of $\sigma(\rho)$ in $T\left(s_{n}\right)$ ).

## Modal edges

## An edge $\left(s, s^{\prime}\right)$ is modal

if a strategy can block it completely.

Example on an IMC with Sec : presence of red, hidden by $\mathcal{O}$.


## Modal edges

## An edge $\left(s, s^{\prime}\right)$ is modal

if a strategy can block it completely.

Example on an IMC with Sec: presence of red, hidden by $\mathcal{O}$.


## Maximal and minimal disclosure

## For Sec in $\mathcal{M}$ with initial distribution $\mu_{0}$ :

- $\operatorname{Disc}_{\max }\left(\mathcal{M}, \mu_{0}, \operatorname{Sec}\right)=\sup _{\sigma \in \operatorname{Strat}(\mathcal{M})} \operatorname{Disc}\left(\mathcal{M}_{\sigma}, \mu_{0}, \operatorname{Sec}\right)$
- $\operatorname{Disc}_{\text {min }}\left(\mathcal{M}, \mu_{0}, \operatorname{Sec}\right)=\inf _{\sigma \in \operatorname{Strat}(\mathcal{M})} \operatorname{Disc}\left(\mathcal{M}_{\sigma}, \mu_{0}, \operatorname{Sec}\right)$

Several disclosure problems for a given $\mathcal{M}$

- Value problem: compute the disclosure $\operatorname{Disc_{\text {max}}}$ or $D i s c_{\text {min }}$.
- Quantitative decision problems: Given a threshold $\theta \in[0,1]$, is Disc $_{\text {max }} \geq \theta$ ? is $D i s c_{\text {min }} \leq \theta$ ?
- Qualitative decision problems:

Limit-sure disclosure: the quantitative problem with $\theta=1$ for maximisation and $\theta=0$ for minimisation.

## Maximal Disclosure

[BCS15] On MDPs, if observer ignores the strategies:
The value can be computed in polynomial time;
All problems are decidable.
[BKMS16]: For a non modal LCMC, the value can be computed in EXPTIME.
[BHL17] On MDPs, if observer knows the strategies:
Deterministic strategies are sufficient;
The problem asking whether there exists a strategy producing value 1 is EXPTIME-complete;
But the quantitative and limit-sure problems are undecidable.
Consequence:
The quantitative problem is undecidable for general LCMCs.

## Minimal Disclosure

[BHL17] On MDPs, if observer knows the strategies:
Families of randomized strategies are necessary;
The value can be computed in EXPTIME;
All problems are decidable.

## Outline

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement

## Refinement for CMCs

Refinement of $\mathcal{M}_{2}$ by $\mathcal{M}_{1}$ :


## Strong refinement

 and if $s_{1} \mathcal{R} s_{2}$ there is a mapping $\delta: S_{1} \rightarrow \mathcal{D} \operatorname{ist}\left(S_{2}\right)$ such that:- all distributions in $T_{1}\left(s_{1}\right)$ translate to $S_{2}$ in a way compatible with $T_{2}\left(s_{2}\right)$
- if $\delta\left(s_{1}^{\prime}\right)\left(s_{2}^{\prime}\right)>0$ then $s_{1}^{\prime} \mathcal{R} s_{2}^{\prime}$.


## Monotonicity of maximal disclosure

No inclusion between $\underline{\operatorname{sat}}\left(\mathcal{M}_{1}\right)=\left\{\mathcal{M}_{1, \sigma_{1}} \mid \sigma_{1} \in \operatorname{Strat}\left(\mathcal{M}_{1}\right)\right\}$ and $\operatorname{sat}\left(\mathcal{M}_{2}\right)=\left\{\mathcal{M}_{2, \sigma_{2}} \mid \sigma_{2} \in \operatorname{Strat}\left(\mathcal{M}_{2}\right)\right\}$.

Disclosure is monotonic for LCMCs:
If $\mathcal{M}_{1}$ weakly refines $\mathcal{M}_{2}$ with initial states $s_{1}$,init and $s_{2, \text { init }}$ then for a secret Sec, $\operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{1}, \mathbf{1}_{s_{1, \text { init }}}, S e c\right) \leq \operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{2}, \mathbf{1}_{s_{2, \text { init }}}, S e c\right)$.

Construction of the relation


## Monotonicity of maximal disclosure

No inclusion between $\underline{\operatorname{sat}}\left(\mathcal{M}_{1}\right)=\left\{\mathcal{M}_{1, \sigma_{1}} \mid \sigma_{1} \in \operatorname{Strat}\left(\mathcal{M}_{1}\right)\right\}$ and $\operatorname{sat}\left(\mathcal{M}_{2}\right)=\left\{\mathcal{M}_{2, \sigma_{2}} \mid \sigma_{2} \in \operatorname{Strat}\left(\mathcal{M}_{2}\right)\right\}$.

Disclosure is monotonic for LCMCs:
If $\mathcal{M}_{1}$ weakly refines $\mathcal{M}_{2}$ with initial states $s_{1}$,init and $s_{2, \text { init }}$ then for a secret Sec, $\operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{1}, \mathbf{1}_{s_{1, \text { init }}}, S e c\right) \leq \operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{2}, \mathbf{1}_{s_{2, \text { init }}}, S e c\right)$.

Construction of the relation


## Monotonicity of maximal disclosure

No inclusion between $\underline{\operatorname{sat}}\left(\mathcal{M}_{1}\right)=\left\{\mathcal{M}_{1, \sigma_{1}} \mid \sigma_{1} \in \operatorname{Strat}\left(\mathcal{M}_{1}\right)\right\}$ and $\operatorname{sat}\left(\mathcal{M}_{2}\right)=\left\{\mathcal{M}_{2, \sigma_{2}} \mid \sigma_{2} \in \operatorname{Strat}\left(\mathcal{M}_{2}\right)\right\}$.

Disclosure is monotonic for LCMCs:
If $\mathcal{M}_{1}$ weakly refines $\mathcal{M}_{2}$ with initial states $s_{1}$,init and $s_{2, \text { init }}$ then for a secret Sec, $\operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{1}, \mathbf{1}_{s_{1, \text { init }}}, S e c\right) \leq \operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{2}, \mathbf{1}_{s_{2, \text { init }}}, S e c\right)$.

Construction of the relation


## Monotonicity of maximal disclosure

No inclusion between $\underline{\operatorname{sat}}\left(\mathcal{M}_{1}\right)=\left\{\mathcal{M}_{1, \sigma_{1}} \mid \sigma_{1} \in \operatorname{Strat}\left(\mathcal{M}_{1}\right)\right\}$ and $\underline{\operatorname{sat}}\left(\mathcal{M}_{2}\right)=\left\{\mathcal{M}_{2, \sigma_{2}} \mid \sigma_{2} \in \operatorname{Strat}\left(\mathcal{M}_{2}\right)\right\}$.

Disclosure is monotonic for LCMCs:
If $\mathcal{M}_{1}$ weakly refines $\mathcal{M}_{2}$ with initial states $s_{1}$,init and $s_{2, \text { init }}$ then for a secret Sec, $\operatorname{Disc}_{\max }\left(\mathcal{M}_{1}, \mathbf{1}_{s_{1, \text { init }}}, \operatorname{Sec}\right) \leq \operatorname{Disc}_{\max }\left(\mathcal{M}_{2}, \mathbf{1}_{s_{2, \text { init }}}, \operatorname{Sec}\right)$.

Construction of the relation


If $\mathcal{M}_{1}$ weakly refines $\mathcal{M}_{2}$ then for any strategy $\sigma_{1}$ of $\mathcal{M}_{1}$, there is a strategy $\sigma_{2}$ of $\mathcal{M}_{2}$ such that $\mathcal{M}_{1, \sigma_{1}}$ refines $\mathcal{M}_{2, \sigma_{2}}$.

## Example

$\mathcal{M}_{2}$ :
$[0,1]$

$\mathcal{M}_{2}$ is refined by $\mathcal{M}_{1}$,
$\operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{2}, \mathbf{1}_{r_{0}}, \operatorname{Sec}\right)=0.8$ and $\operatorname{Disc}_{\max }\left(\mathcal{M}_{1}, \mathbf{1}_{q_{0}}, \operatorname{Sec}\right)=0$.

## A consequence for modeling

IMCs are not closed under conjunction but:
The conjunction of two IMCs $\mathcal{M}_{1}$ and $\mathcal{M}_{2}$ is an LCMC

Using results from [Caillaud et al, 2011]:
For LCMCs $\mathcal{M}_{1}, \mathcal{M}_{2}$ and $\mathcal{M}_{3}$
$\mathcal{M}_{1} \wedge \mathcal{M}_{2}$ weakly refines both $\mathcal{M}_{1}$ and $\mathcal{M}_{2}$, hence:
$\operatorname{Disc}_{\max }\left(\mathcal{M}_{1} \wedge \mathcal{M}_{2}\right) \leq \min \left(\operatorname{Disc}_{\max }\left(\mathcal{M}_{1}\right), \operatorname{Disc_{\operatorname {max}}(\mathcal {M}_{2})).}\right.$
If $\mathcal{M}_{3}$ refines both $\mathcal{M}_{1}$ and $\mathcal{M}_{2}$ then it also weakly refines $\mathcal{M}_{1} \wedge \mathcal{M}_{2}$, hence:

$$
\operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{3}\right) \leq \operatorname{Disc_{\operatorname {max}}}\left(\mathcal{M}_{1} \wedge \mathcal{M}_{2}\right)
$$

## Conclusion

Opacity is a flexible way to express information flow properties not necessarily preserved under arbitrary refinement.

Linear CMCs form a good class for compact specifications of probabilistic systems with:

- nice closure properties;
- an increased security criterion with schedulers as adversaries;
- monotonicity of maximal disclosure;
- But the quantitative problem is undecidable in general, like for MDPs, unless the structure is fixed.

Minimisation on MDPs

- require randomized strategies;
- and all quantitative problems are decidable.


## Conclusion

Opacity is a flexible way to express information flow properties not necessarily preserved under arbitrary refinement.

Linear CMCs form a good class for compact specifications of probabilistic systems with:

- nice closure properties;
- an increased security criterion with schedulers as adversaries;
- monotonicity of maximal disclosure;
- But the quantitative problem is undecidable in general, like for MDPs, unless the structure is fixed.

Minimisation on MDPs

- require randomized strategies;
- and all quantitative problems are decidable.


## Thank you

## Strict inclusion of $\operatorname{sat}(\mathcal{M})$ in $\operatorname{sat}(\mathcal{M})$

An implementation not obtained by strategies


Specification $\mathcal{M}$
$\mathcal{A}_{0}$ with single strategy
$\mathcal{A}_{1}$ implementation of $\mathcal{M}$

